位置变送器 SDAS-MHS 操作简介

王俊 Festo 技术支持 2020 年 12 月 3 日

关键词:

位置变送器,SDAS-MHS

摘要:

本文介绍了位置变送器 SDAS-MHS 的操作简介。

目标群体:

本文仅针对有一定自动化设备调试基础的工程师,需要对 Festo 位置变送器 SDAS-MHS 和 CPX-E 模块以及 Beckhoff Twincat3 有一定了解。

声明:

本文档为技术工程师根据官方资料和测试结果编写,旨在指导用户快速上手使用 Festo 产品,如果发现描述与官方正式出版物冲突,请以正式出版物为准。

我们尽量罗列了实验室测试的软、硬件环境,但现场设备型号可能不同,软件/固件版本可能有差异,请务必在理解文档内容和确保安全的前提下执行测试。

我们会持续更正和更新文档内容, 恕不另行通知。

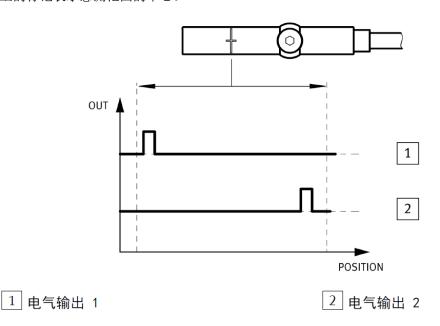
目录

1	简介		4
		<u></u>	
		、 I开关工作方式	
		置变送器工作模式	
		拓扑结构	
		安装 Beckhoff 软件	
		安装 XML 设备描述文件	
	2.2.4	创建新项目	11
	2.2.5	窗口比较器功能实现	12

1 简介

位置变送器/接近开关 SDAS-MHS 用于和气缸一起组成非接触式活塞位置反馈,适用于 T型槽。

一个设备集合了两种功能: 1、用作位置变送器时,其输出与感测范围内行程成正比的信号,信号可用 IO-Link 通信标准。而且,4条通道可通过 IO-Link 编程为接近开关、区域值比较器或迟滞比较器;2、用作可编程接近开关,SDAS-MHS 以二进制信号反馈活塞位置,标准为 24V 输出信号。另外,通过设备上的电容控制键在感测范围内可示教 2 个接近开关开关点。

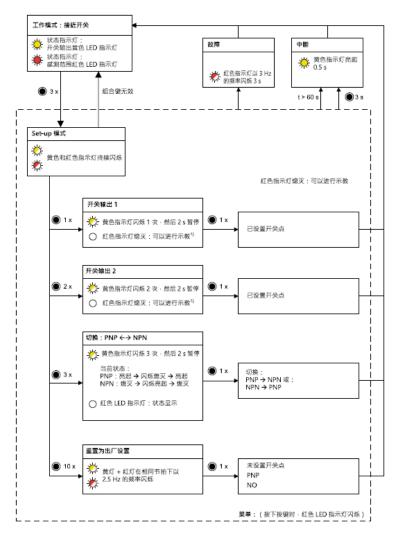

得益于其极为紧凑的结构,SDAS-MHS 是用于抓手、紧凑型气缸及所有安装空间有限的应用场合的理想解决方案。

2 工作模式

位置变送器可以感测活塞磁体的磁场,并持续获取感测范围内的活塞运动。位置变送器可以在以下工作模式下工作: 1、气缸开关,带2个可编程开关点; 2、位置变送器,带IO-Link通信。

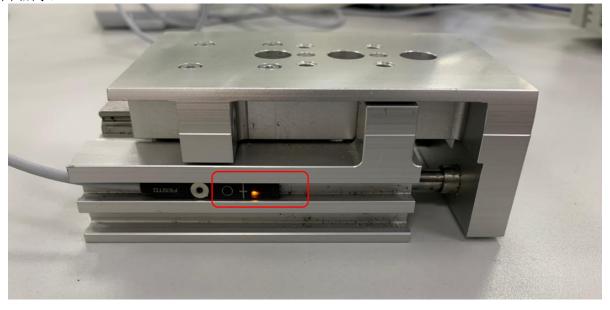
2.1 气缸开关工作模式

在气缸开关工作模式下,可以对感测范围内的 2 个开关点进行编程。其特点如下: (1)通过电容式操作键进行操作; (2)可调整开关逻辑:常开触点(NO)或者常闭触点(NC); (3)输出信号为 24V DC,可调整输出形式为 PNP或者 NPN; (4)壳体上的标记表示感测范围的中心。

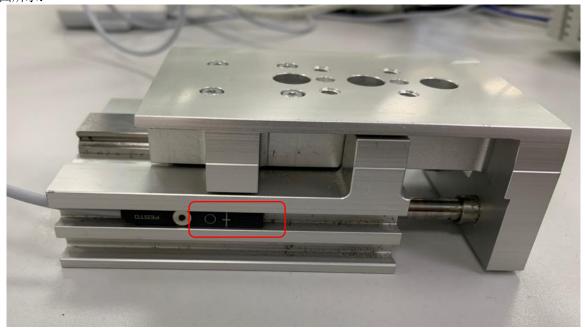


在气缸开关工作模式下,接线如下图所示。

针脚	芯线颜色	分配	插头
1	棕色 (BN)	工作电压 +24 V DC	M8×1, 4 针
2	白色(WH)	开关输出 2	2 - 4
3	蓝色(BU)	0 V	2 + + 4
4	黑色(BK)	开关输出 1	1 + + 3


Tab. 4 气缸开关工作模式插头连接的针脚分配

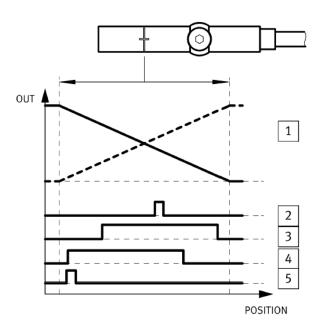
SDAS-MHS 的感测范围最大为 52mm,在感测范围内,可以自行编程设置 2 个开关输出点,具体设置过程如下图所示:



设置完毕后,将 SDAS-MHS 装在气缸上,用手推动气缸,可以看到位置变送器有 3 种工作状态:

1、开关触发状态:在该状态下黄灯亮,而且有电压信号输出,只有当气缸在位置变送器设定的两个位置能触发开关,如下图所示:

2、开关未触发状态:在感测范围内,除设置的两个开关点外,气缸在其他位置时所有的灯都熄灭,没有信号输出,如下图所示:



3、超出感测范围:在感测范围外,位置变送器的红灯会亮,提示用户已经超出了变送器的感测范围,如下图所示:

2.2 位置变送器工作模式

在位置变送器工作模式下,传输已编程的开关信号和连续的位置值(数字编码模拟量值)。该模式下,通过 IO-Link 编程,电容式操作键已禁用,在 4 个开关通道上,可以分别对气缸开关或窗口比较器或迟滞比较器进行编程,同时连续的位置值采用并行传输方式,且有独立于开关通道的位置值输出,如下图所示:

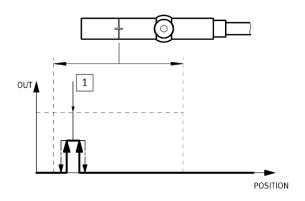
---- 输出信号 (PDV): 已逆转增长方向

--- 输出信号 (PDV): 增长方向出厂状态

- 1 PDV (Position Data Values)
- 2 SSC1 (Switching Signal Channel)
- 3 SSC2

4 SSC3

5 SSC4


在位置变送器工作模式下,接线如下图所示:

针脚	芯线颜色	分配	插头
1	棕色 (BN)	工作电压 +24 V DC	M8×1, 4 针
2	白色 (WH)	未使用	
3	蓝色(BU)	0 V	

针脚	芯线颜色	分配	插头
4	黑色(BK)	10-Link	2 + + 4 + + 3

在位置变送器工作模式下,主要有4种功能,分别是:

1、气缸开关功能

— 输出信号

----- 迟滞

1 示教点

Fig. 5 气缸开关功能

- 示教点位于开关窗口的中间。
- 开关窗口和滞后是预设的,无法更改。

2、窗口比较器

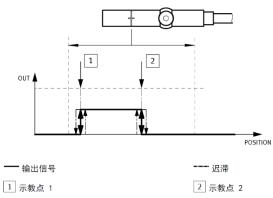
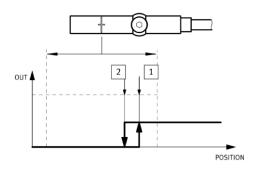



Fig. 6 窗口比较器

示教点与窗口比较器功能关联。

- 示教点的位置决定了窗口宽度。
- 迟滞是预设的,无法更改。

3、迟滞比较器

1 示教点 1

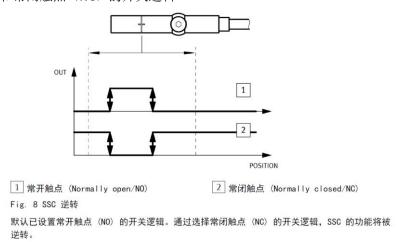
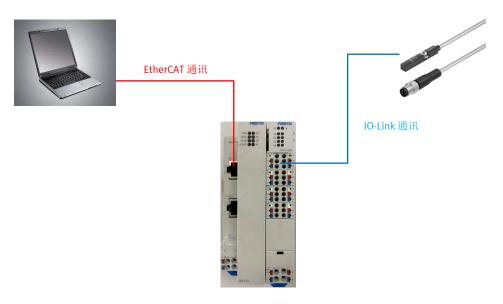
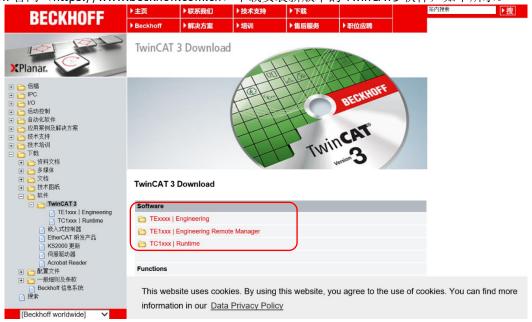

2 示教点 2

Fig. 7 迟滞比较器

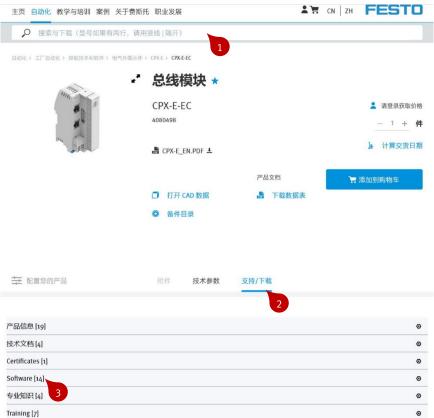
示教点与迟滞比较器功能关联。


- 示教点 1 为接通点,示教点 2 为重置点。
- 示教点 1 与示教点 2 之间的距离决定了迟滞的大小。

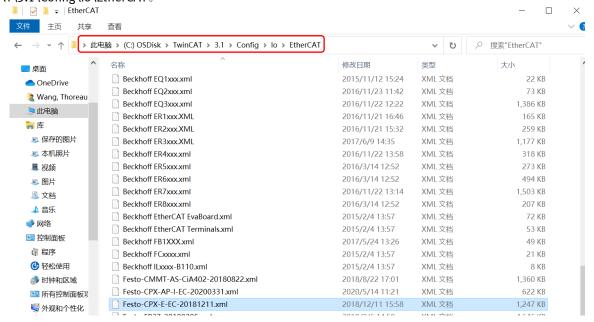
4、常开触点(NO)和常闭触点(NC)的开关逻辑


2.2.1 拓扑结构

本示例以安装 TwinCAT3 软件的电脑作为主站,以 CPX-E-EC 作为从站,在 从站上挂载 CPX-E-4IOL 模块,然后将 SDAS-MHS 作为 IO-Link 设备加载到 4IOL 模块上面。


2.2.2 安装 Beckhoff 软件

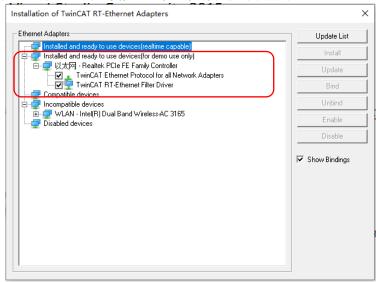
在 Beckhoff 官网(https://www.beckhoff.com.cn)下载安装新版本的 TwinCAT3 软件,如下所示。



2.2.3 安装 XML 设备描述文件

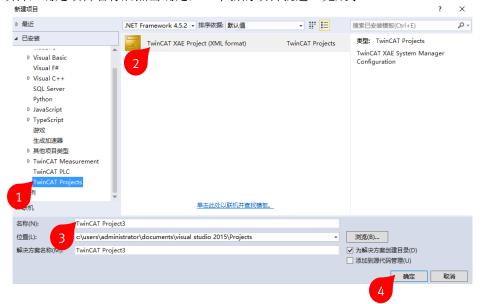
在 Festo 官网搜索 CPX-E-EC,在搜索结果页面点击支持/下载,选择 Software,在下拉列表中选择该从站的 XML 设备描述文件。

设备描述文件可以直接放入 TwinCAT 的安装目录文件夹下,本文中的安装路径为: C:\TwinCAT\3.1\Config\lo\EtherCAT。

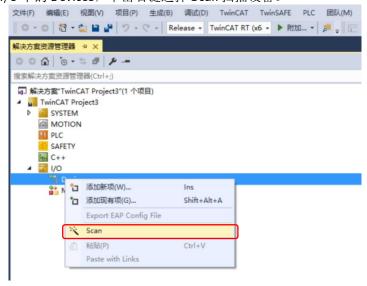


2.2.4 创建新项目

本文使用电脑作为主站, CPX-E-EC 作为从站, 在 TwinCAT3 安装完毕后, 打开软件, 然后点击下图中选项:

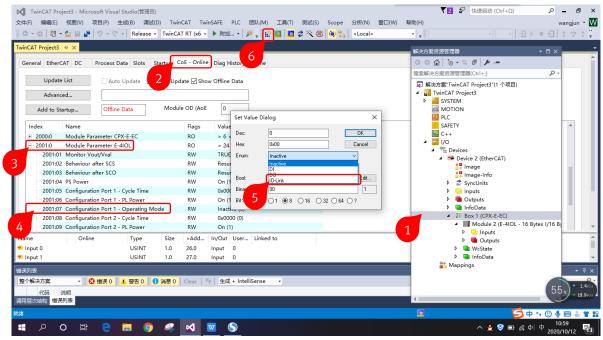

在弹出选项框中找到以太网选项,点击右侧安装,安装完毕后如下图所示:

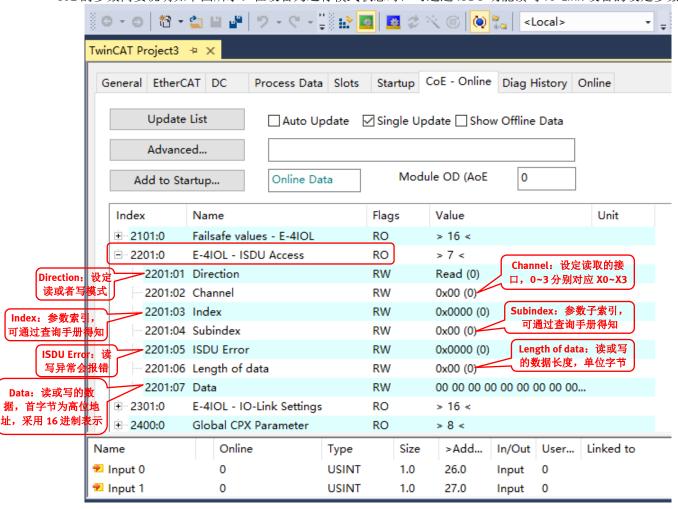
在文件选项下拉框中选择新建, 然后点击项目。



选择 TwinCAT 项目,确定项目名称后点击确定,一个新的项目就建立完成了。

2.2.5 窗口比较器功能实现

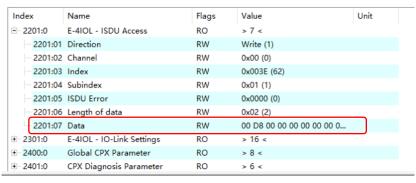

新建项目完成后,选择 I/O 下的 Devices,单击右键选择 Scan 扫描设备。


扫描到设备后,点击OK即可添加设备。如果无法扫描到设备,建议检查网线等是否连接正常。

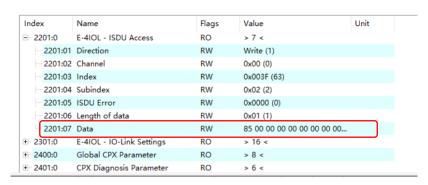
设备添加完毕后,在配置模式下点击从站选项,弹出参数界面,选择 CoE-Online 选项卡,在该项下打开 IO-Link 模块参数选项,点击 Operating Mode(运行模式),即可更改模式为 IO-Link,实例中使用了 4IOL 模块的 X0 接口,因此需要将这个接口运行模式改为 IO-Link。参数修改完毕后,选择激活参数,参数会被下载至设备,并将配置模式转变为运行模式。

CoE 的参数简要说明如下图所示。在设备为运行模式状态时,可通过 ISDU 功能读写 IO-Link 设备的设定参数。

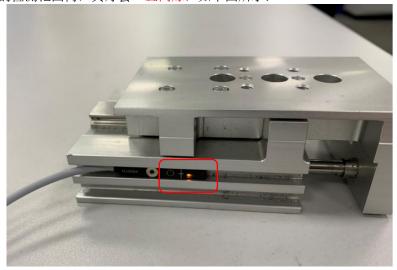
下面以窗口比较器为示例来说明 SDAS-MHS 如何通过 IO-Link 来实现相应的功能。


在 Festo 官网搜索 SDAS-MHS,在搜索结果页面点击支持/下载,选择技术文档在下拉列表中选择该传感器的操作手册,即可下载该应用手册。




需要实现的是窗口比较器功能,使用的是 SSC2 通道,从手册中查询可以知道需要修改如下参数:

0x003E	01	RW	Setpoint 1	216 3784	IntT16	SSC2
(62)	02	RW	Setpoint 2	216 3784	IntT16	
0x003F (63)	01	RW	Switchpoin t logic	0 = NO, normally open 1 = NC, normally closed	UIntT8	
0x003F (63)	02	RW	Switchpoin t mode	0 = Deactivate d 134 = Cylinder switch 133 = Window comparator	UIntT8	SSC2


Setpoint 1 设置为 216, Setpoint 2 设置为 3784, Switchpoint logic 使用默认的常开(NO), Switchpoint mode 设置为 133(窗口比较器)。注意:输入和输出显示都采用 16 进制,因此需要进行相应的数据转换。转换成相应的 16 进制数后 Setpoint 1 设置为 D8, Setpoint 2 设置为 EC8, Switchpoint mode 设置为 85,同时应注意数据索引和数据长度,参数设定完毕后最后一步选择写入(Write),具体设置如下图所示:

设置完毕后,在气缸的检测范围内,黄灯会一直闪烁,如下图所示:

超出检测范围后,黄灯会<mark>闪烁</mark>,同时红灯也会亮起,如下图所示:

查阅手册可以得知相应的 PDV(Process Data Input)参数地址及格式如下图所示:

0x0028 (40)	0	R	Process Data	See PDV	Record 2	
			Input		Byte	

过程数据 F	Record: 2 By	/te					
位	15		4	3	2	1	0
Process data	s Process Data Variable (PDV) → Tab. 17 PDV (Process Data Variable): 位置信号.		SSC4 ¹⁾	SSC3 ¹⁾	SSC2 ¹⁾	SSC1 ¹⁾	
Data	Position			switch 4	switch 3	switch 2	switch 1
Туре	Unsigned I	nteger		BooleanT			

¹⁾ 开关信号通道(Switching Signal Channel)

PDV (Dec)	PDV (Hex)	说明
0	0x000	超出感测范围 (Out of Range)
1	0x001	感测范围内,有效的位置信号
3999	0xF9F	
4000	0xFA0	超出感测范围 (Out of Range)
4080	0xFF0	PDV Error
4095	0xFFF	Out of Range

Tab. 17 PDV (Process Data Variable): 位置信号

使气缸处于检测范围内,设置 PDV 索引及子索引,读取 PDV 参数如下图所示:

Index	Name	Flags	Value	Unit
2201:0	E-4IOL - ISDU Access	RO	> 7 <	
2201:	01 Direction	RW	Read (0)	
2201:	02 Channel	RW	0x00 (0)	
2201:	03 Index	RW	0x0028 (40)	
2201:	04 Subindex	RW	0x00 (0)	
2201:	05 ISDU Error	RW	0x0000 (0)	
2201:	06 Length of data	RW	0x02 (2)	
2201:	07 Data	RW	57 C2 00 00 00 00 00 00 00 00.	
± 2301:0	E-4IOL - IO-Link Settings	RO	> 16 <	
± 2400:0	Global CPX Parameter	RO	> 8 <	
± 2401:0	CPX Diagnosis Parameter	RO	> 6 <	

读取 PDV 数据为 0x57C2,为 16 进制数据。从 PDV 格式可知,低 4 位是开关信号通道,其 16 进制数据为 2 (0010),此时即是设定的 SSC2 通道开关信号有效,气缸处于窗口比较器感测范围内; 高 12 位是位置信号,其 16 进制数据为 57C,转换成十进制为 1404,即是此时实际位置所在。