RS_Logix5000 环境下 EtherNet/IP 通讯控制 CPX-AP-I-EP

孟庆伟 Festo 技术支持 2020 年 3 月 31 日

关键词:

RS_Logix5000, Rockwell Systems, EtherNet/IP, CPX-AP-I-EP

摘要:

本文介绍了 Rockwell PLC 控制 Festo CPX-AP-I-EP 控制器的实例,通讯协议为 EtherNet/IP,编程软件为 RS_Logix5000。文档主要内容包括浏览器访问,EDS 和 L5X 文件导出,RS_Logix5000 通讯设置及控制,参数读写,故障诊断等。

目标群体:

本文仅针对有一定自动化设备调试基础的工程师,需要对 Festo 阀岛以及 RS_Logix5000 有一定了解。

声明:

本文档为技术工程师根据官方资料和测试结果编写,旨在指导用户快速上手使用 Festo 产品,如果发现描述与官方正式出版物冲突,请以正式出版物为准。

我们尽量罗列了实验室测试的软、硬件环境,但现场设备型号可能不同,软件/固件版本可能有差异,请务必在理解文档内容和确保安全的前提下执行测试。

我们会持续更正和更新文档内容, 恕不另行通知。

目录

1		·/硬件介绍	
		本测试的软件/硬件	
	1.2	CPX-AP-I-EP-M12 硬件接口	4
	1.3	本实验的拓扑结构	6
	1.4	AP 系统的拓扑结构说明	6
	1.5	IP 设置	7
2	Web	server	8
	2.1	模块视图	8
	2.2	登陆密码	8
	2.3	参数设置	8
	2.4	装配视图	9
	2.5	EDS 及 L5X 文件导出	10
	2.6	固件更新	11
	2.7	诊断记录	11
3	软件	- A - A - A - A - A - A - A - A - A - A	12
		导入 EDS 文件	
		导入 L5X(L5K)文件	
		复制配置到用户程序中	
		导出程序块到用户程序中	
		下载并 online	
4		· · · · · · · · · · · · · · · · · · ·	-
·		Webserver 的诊断功能	
		PLC 中查看故障代码	
		实例: 恢复通信	
	4.3.1	2.17.1 11.22 - 11.1	
	4.3.2	7-7-	
	4.3.3		
5		· 运写	
,		· · · · · · · · · · · · · · · · · · ·	_
		PLC 写参数	
		1 介绍	
		2 建立标签	
	_	2 建立协业	
	_	5 程序	
		4 例以PLC 读参数	
[7 /]		PLC	
		(态和诊断对象	
D)	球し砂	障代码	31

软件/硬件介绍

1.1 本测试的软件/硬件

型号	固件/版本	描述
CPX-AP-I-EP-M12	V1.1.1	Ethernet/IP总线节点
CPX-AP-I-4DI4DO-M12-5P	V1.43.10	数字输入输出模块
CPX-AP-I-4DI4DO-M8-3P	V1.43.10	数字输入输出模块
VAEM-L1-S-24-AP	V1.43.10	VTUG电接口模块
1769-L32		PLC
RSLogix5000		PLC编程软件
NEBC-D8G4-ES-*-N-S-D8G4-ET		CPX-AP通讯电缆
NEBL-M8G4-E-*-N-M8G4		双端接头供电电缆
NEBL-M8G4-E-*-N-LE4		一端散线供电电缆
EDS文件		

CPX-AP-I-EP-M12 硬件接口 1.2

PL: Power Load 负载电源

NS: Network status

网络状态

TP1: Network connection

网络连接1

TP1: EtherNet/IP接口1

XF20: AP 总线主接口

XD1: 电源供应接口

SD: System Diagnosis 系统诊断

MT: Maintenance 维护

MS: Module status 模块状态

TP2: Network connection 网络连接 2

IP 拨码盘

TP2: EtherNet/IP接口 2

TP1/TP2 默认开启交叉检测 TP1/TP2 可做交换机

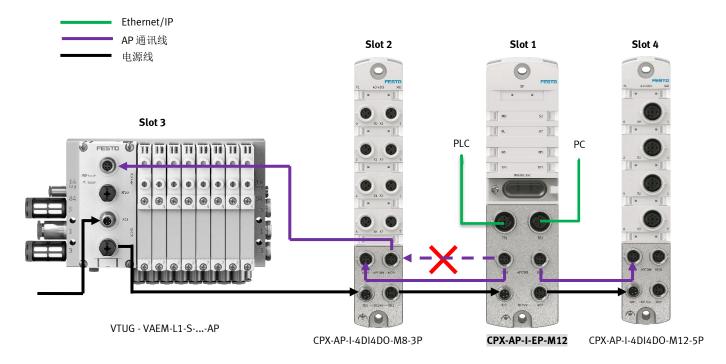
XF21: AP 总线副接口

XF 物理定义一一致 连接 XF20 主接口的设备地址空间优先排布

XD2: 电源转接接口

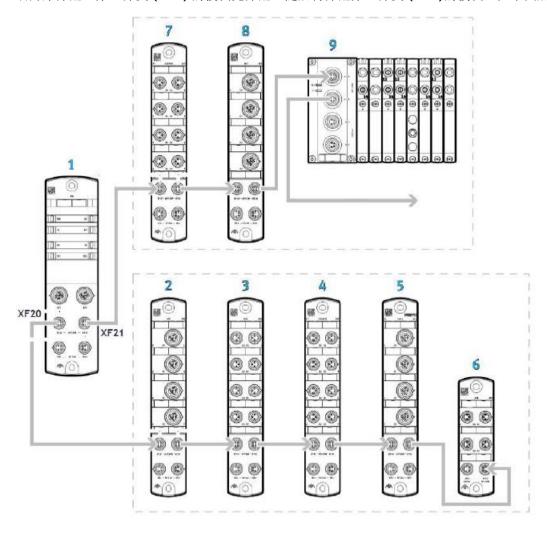
接口定义如下:

XD1							
插头 M8, 4 针, A编	码	信号					
2 ,	1	+24 V DC 逻辑电源 PS					
2 4	2	0 V DC 负载电源 PL					
1()2	3	0 V DC 逻辑电源 PS					
	4	+24 V DC 负载电源 PL					


XD2							
M8 插座, 4 针, A 统	编码	信号					
, 2	1	+24 V DC 逻辑电源 PS					
4007	2	0 V DC 负载电源 PL					
3(0 0)1	3	0 V DC 逻辑电源 PS					
	4	+24 V DC 负载电源 PL					

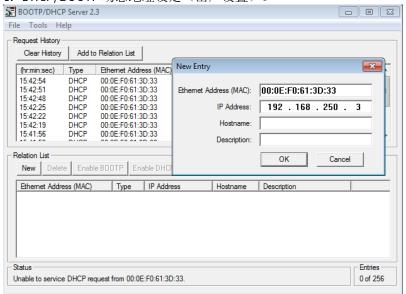
XF20、XF21(必须选用FEST0专用AP通讯电缆NEBC-D8G4-ESN-S-D8G4-ET)								
M8 插座, 4 针, D 编	码	信号						
1	1	RX-	接收数据 –					
	2	TX+	发送数据 +					
4(0 0)2	3	RX+	接收数据 +					
3	4	TX-	发送数据 –					

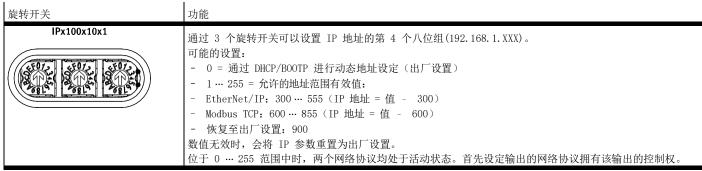
TP1			
M12 插座, 4 针, D	编码	信号	
2	1	TD+	发送数据 +
	2	RD+	接收数据 +
1003	3	TD-	发送数据 –
4	4	RD-	接收数据 _
	螺纹	屏蔽	功能接地


TP2							
M12 插座, 4 针, D	编码	信号					
2	1	RD+	接收数据 +				
10	2	TD+	发送数据 +				
1(0 0)3	3	RD-	接收数据 _				
	4	TD-	发送数据 –				
4	螺纹	屏蔽	功能接地				

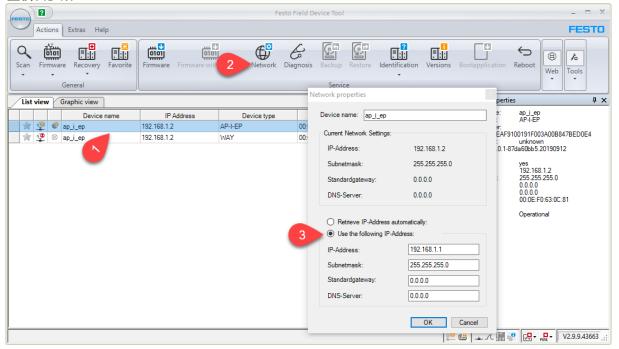
1.3 本实验的拓扑结构

1.4 AP 系统的拓扑结构说明


每次启动 CPX-AP 系统时,模块的地址会自动分配。总线接口的分配地址为 "1",所有其它模块,从总线接口开始从左往右升序分配。第一分支 (XF20) 的模块先分配,随后再分配第二分支 (XF21)的模块。如下图所示:


1.5 IP 设置

CPX-AP-I-EP的IP设置有三种方式:


1. DHCP/BOOTP 动态地址设定(出厂设置)。

2. 拨码-静态 IP (最高优先级)。

3. FFT 或者 webserver 设置静态 IP: 初次调试时,因为没有连接到 DHCP 服务器,FFT 无法访问 CPX-AP-I-EP。这时可将 拨码拨一个较小数值,比如 2。重启后就可以使用 FFT 更改为静态 IP。再还原拨码为 0 并重启。(拨码也可用于重置模块参数)

也可以在浏览器使用 192.168.1.2 地址访问 webserver 更改 IP 参数,但需要更改电脑网段到 192.168.1.*。

2 Webserver

2.1 模块视图

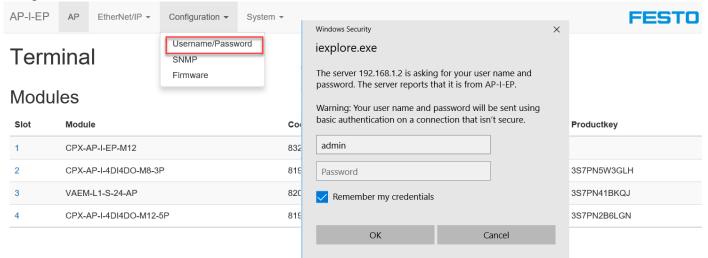
在浏览器输入当前 IP 地址,即可访问 WebServer。在模块视图中显示了模块的各种信息。Slot 号即模块编号。

Terminal

Modules

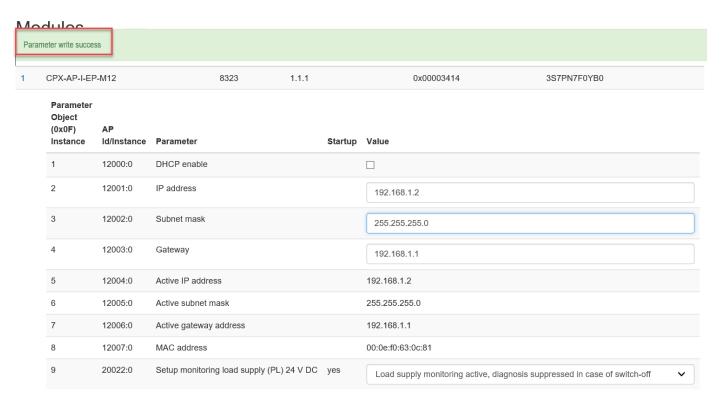
Slot	Module	Code	FWVersion	Serial	Productkey
1	CPX-AP-I-EP-M12	8323	1.1.1	0x00003414	3S7PN7F0YB0
2	CPX-AP-I-4DI4DO-M8-3P	8196	1.43.10	0x00002EA7	3S7PN5W3GLH
3	VAEM-L1-S-24-AP	8204	1.43.10	0x00002546	3S7PN41BKQJ
4	CPX-AP-I-4DI4DO-M12-5P	8197	1.43.10	0x00001E11	3S7PN2B6LGN

2.2 登陆密码

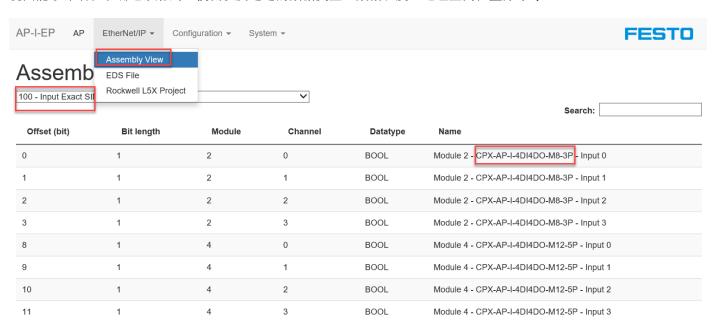

更改参数、更新固件等操作需要登录。

账户名: admin,密码: productkey (区别大小写)。

Productkey 可以在 CPX-AP-I-EP 模块侧面标签上找到,也可以扫描面板上的二维码获得。



出厂设置状态,以上模块视图中 CPX-AP-I-EP 的 productkey 显示为空,第一次修改密码后就会显示出来。configuration 菜单中可以更改密码。


2.3 参数设置

点击模块视图的每个模块,会展开参数设置菜单。修改参数后网页上方会提示是否修改成功。

2.4 装配视图

CPX-AP-I 提供了丰富的装配实例,以方便不同类型的 PLC 的调试。特别是 PLC 不支持站点模块化配置时,通过装配 视图能够详细和准确地了解到:模块以及通道的数据类型,数据长度,地址空间位置分布等。

实例	描述	数据类型	
100	Exact Input data size	SINT	
101	Exact Output data size	SINT	
102	Exact Input data size	INT	准确长度实例
103	Exact Output data size	INT	在佛文及头例
104	Exact Input data size	DINT	
105	Exact Output data size	DINT	
110	Fixed Input data size (16 bytes)	SINT	
111	Fixed Output data size (16 bytes)	SINT	
112	Fixed Input data size (32 bytes)	SINT	
113	Fixed Output data size (32 bytes)	SINT	
114	Fixed Input data size (64 bytes)	SINT	
115	Fixed Output data size (64 bytes)	SINT	
120	Fixed Input data size (64 bytes)	DINT	回足飞及头例
121	Fixed Output data size (64 bytes)	DINT	
122	Fixed Input data size (128 bytes)	DINT	
123	Fixed Output data size (128 bytes)	DINT	
124	Fixed Input data size (512 bytes)	DINT	
125	Fixed Output data size (512 bytes)	DINT	
129	Status & Diag - Global + Module	STRUCT	全局诊断+模块诊断
130	Status & Diag - Global Only	STRUCT	全局诊断
131	Global Status & Diag + Exact Input data size	SINT	
132	Global Status & Diag + Exact Input data size	INT	全局诊断+准确长度实例
133	Global Status & Diag + Exact Input data size	DINT	
134	Global Status & Diag + Fixed Input data size (16 bytes)	SINT	
135	Global Status & Diag + Fixed Input data size (32 bytes)	SINT	
136	Global Status & Diag + Fixed Input data size (64 bytes)	SINT	全局诊断+固定长度实例
137	Global Status & Diag + Fixed Input data size (64 bytes)	DINT	王川
138	Global Status & Diag + Fixed Input data size (128 bytes)	DINT	
139	Global Status & Diag + Fixed Input data size (512 bytes)	DINT	
140	Configuration assembly	STRUCT	
254	Heartbeat		
255	Listen-Only		

▶ 数据类型 DataType

使用何种数据类型视系统而定。数字量模块常用 SINT,模拟量模块常用 INT,密集型数据模块(比如 IOLink)常用 DINT。值得注意的是,每个模块地址长度是定义的数据类型的整数倍。比如数据类型为 DINT,一个模块即使只有 3 个 bit 过程数据,地址空间依然要占用一个 DINT。

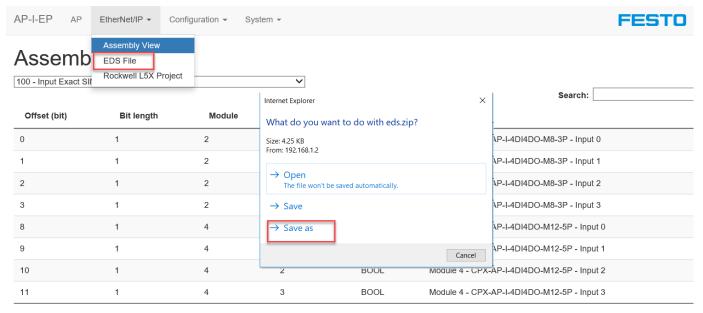
▶ 准确长度实例 Exact Input/Output

配置必要的数据长度。各个模块的数据紧凑排布,占用最小的地址空间。

▶ 固定长度实例 Fixed Input/Output

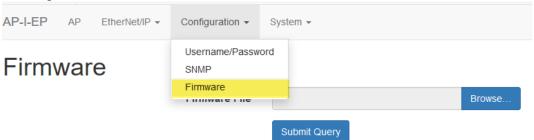
分配固定的数据长度,除了必要的数据长度之外,留有部分空余空间。优势在于添加模块 IO 时无须更改 PLC 组态,也不影响后续模块的地址。缺点在于始终占用较大的地址空间。

➤ 全局诊断 Global Status & Diag


CPX-AP-I-EP 节点全局诊断,包括全局状态、当前故障总数、最新故障代码及其发生的模块号,占用 12Byte 地址空间。

➤ 模块诊断 Module Status & Diag

每个模块(包括 CPX-AP-I-EP-M12 总线节点)的诊断数据,包括模块号、子模块号、通道号、当前状态、模块诊断状态和故障代码。每个模块诊断占用 12byte 地址空间。

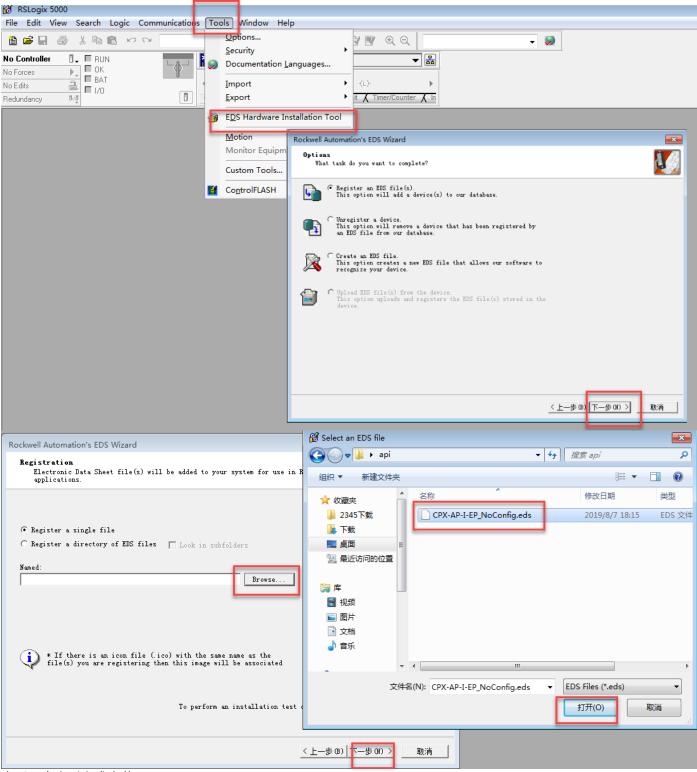

2.5 EDS 及 L5X 文件导出

可将 EDS 和 L5X 导出到本地,方便 PLC 组态。

2.6 固件更新

在 configuration 菜单中,更新固件。

2.7 诊断记录

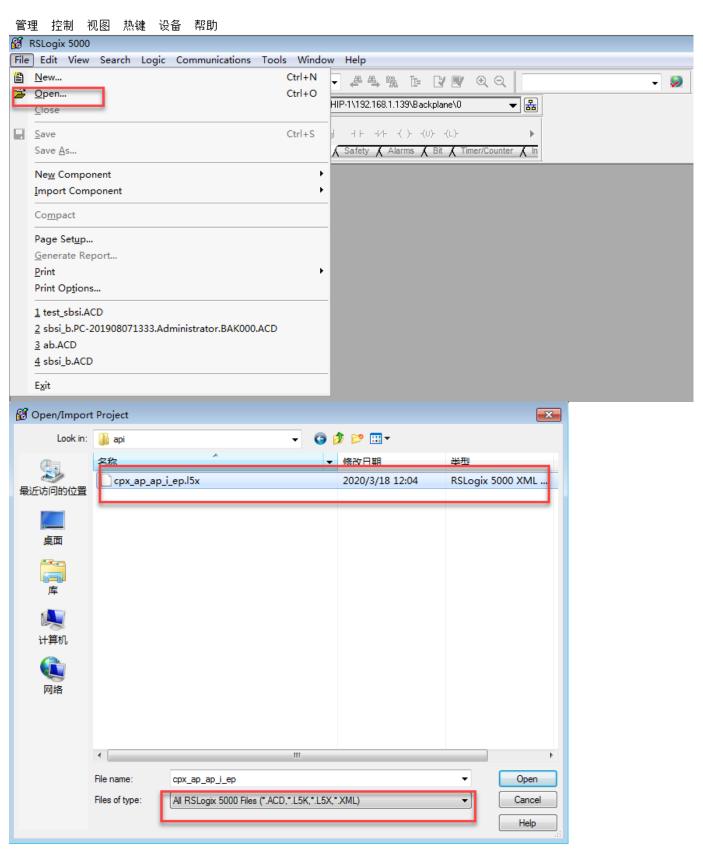

可诊断: 短路/过载/电压/温度/状态/参数/通讯/IO-Link 事件的异常

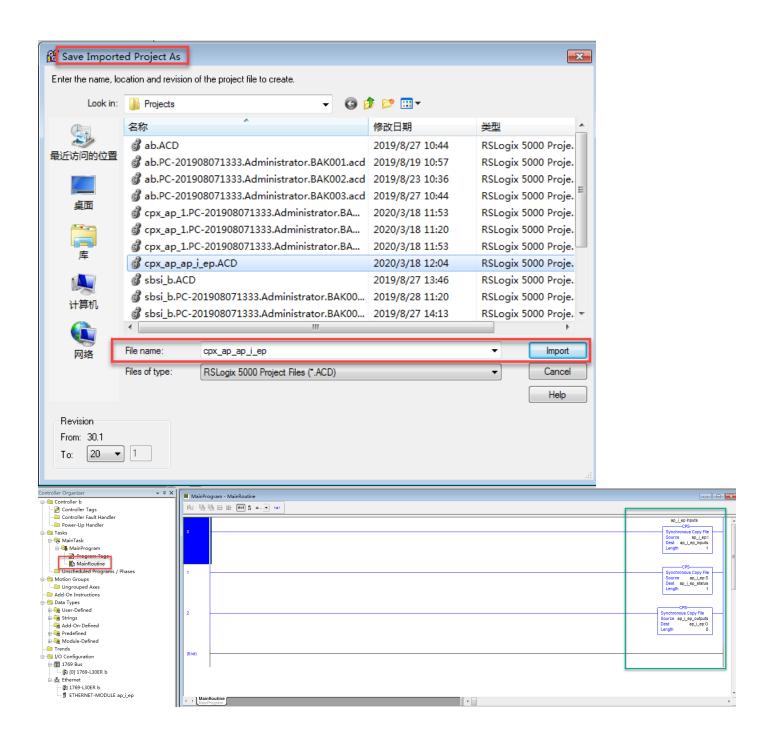
Туре	Uptime	Application	Error	Message
0	1.138701	kernel	0	Kernel diagnosis daemon started
0	1.146372	netconfigd	0	Netconfig daemon started
0	1.148072	netconfigd	0	DIL switches: 0:off 1:off 2:off 3:off 4:off 5:off 6:off 7:off
0	1.266527	mcd	0	multicast daemon started
0	1.663130	EtherNet/IP daemon	0	EtherNet/IP STARTED
0	1.668217	EtherNet/IP daemon	0	MS Led flashing green
0	1.673129	EtherNet/IP daemon	128	Bus state changed to 0x80
0	6.162434	netconfigd	0	ACD: Set last message inactive
0	6.162638	netconfigd	0	ACD: No conflict detected.
•	6.166890	EtherNet/IP daemon	0	NS Led flashing green
0	6.167130	EtherNet/IP daemon	0	MS Led steady green
0	7.302496	EtherNet/IP daemon	0	New connection established.
0	7.302532	EtherNet/IP daemon	0	NS Led steady green
•	7.309211	EtherNet/IP daemon	0	New connection established.
0	7.315157	EtherNet/IP daemon	0	New connection established.
0	7.361706	EtherNet/IP daemon	0	Idle mode: reset outputs.
②	48.768442	EtherNet/IP daemon	295	Module: 3 Diagld=0x08010127 (AP Module Disconnected)

- ▶ Type: 蓝色叹号为信息,灰色表示已经恢复,红叉叉表示故障。
- ▶ Uptime: 秒.毫秒,从上到下时间依次增加。断电后历史记录清空,重新开始。
- ▶ Message: 消息描述,可在硬件手册里故障代码查询详情。

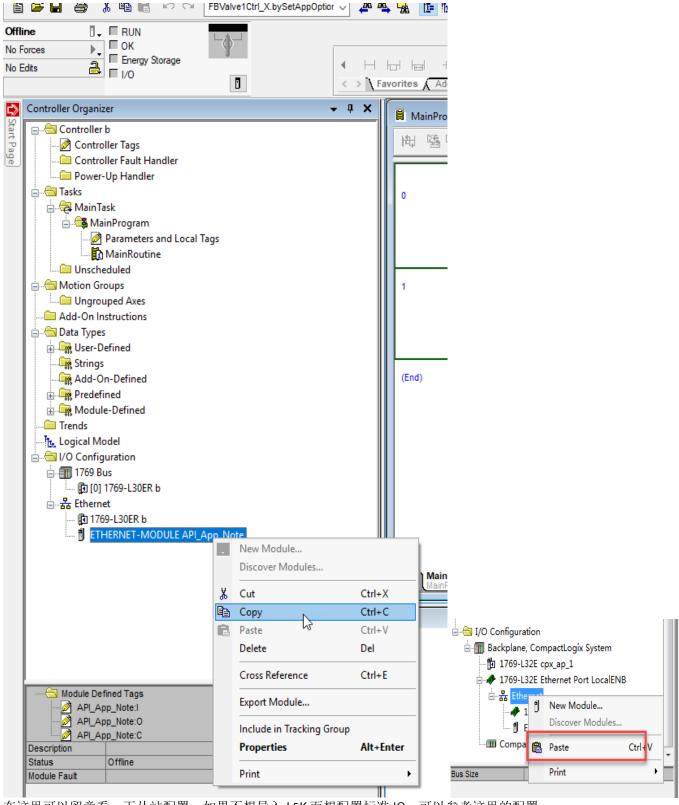
3 软件组态

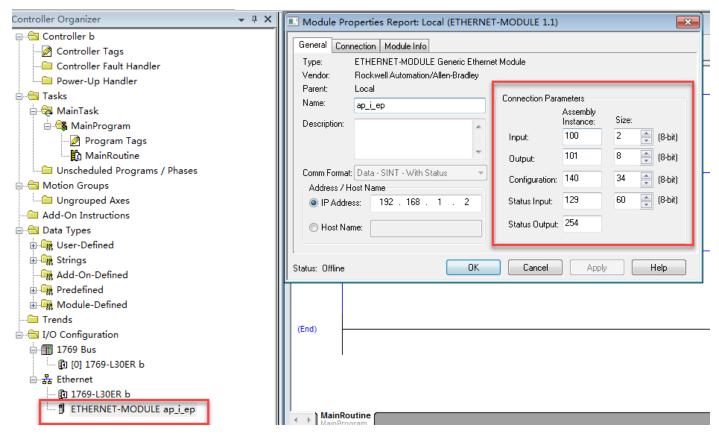
3.1 导入 EDS 文件


点下一步直至完成安装。

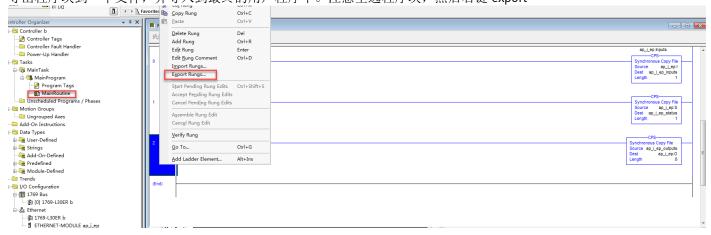

其中 EDS 文件可在 web 中导出。

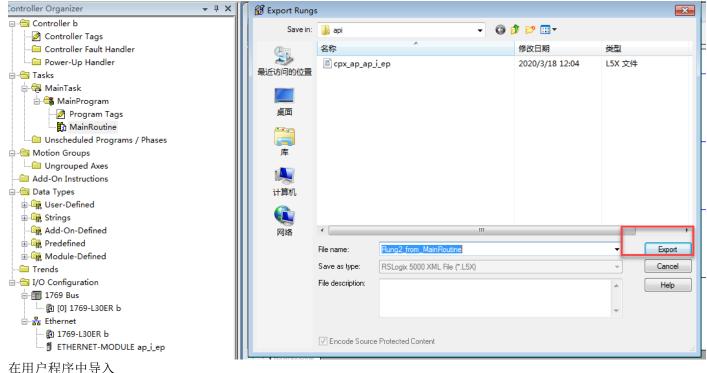
3.2 导入 L5X (L5K) 文件

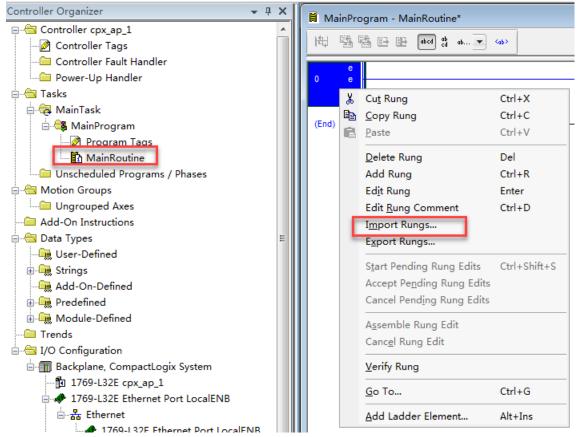

File 列表打开 L5X 文件,另存到一个新项目(后面方便导入到用户实际使用的程序中)。如果是老的 PLC 可能会遇到版本问题报错,可以使用记事本打开 L5X,将软件版本 30 改为 20(方法见视频),以方便导入,后续固件会会更改此处 L5x 的设置。

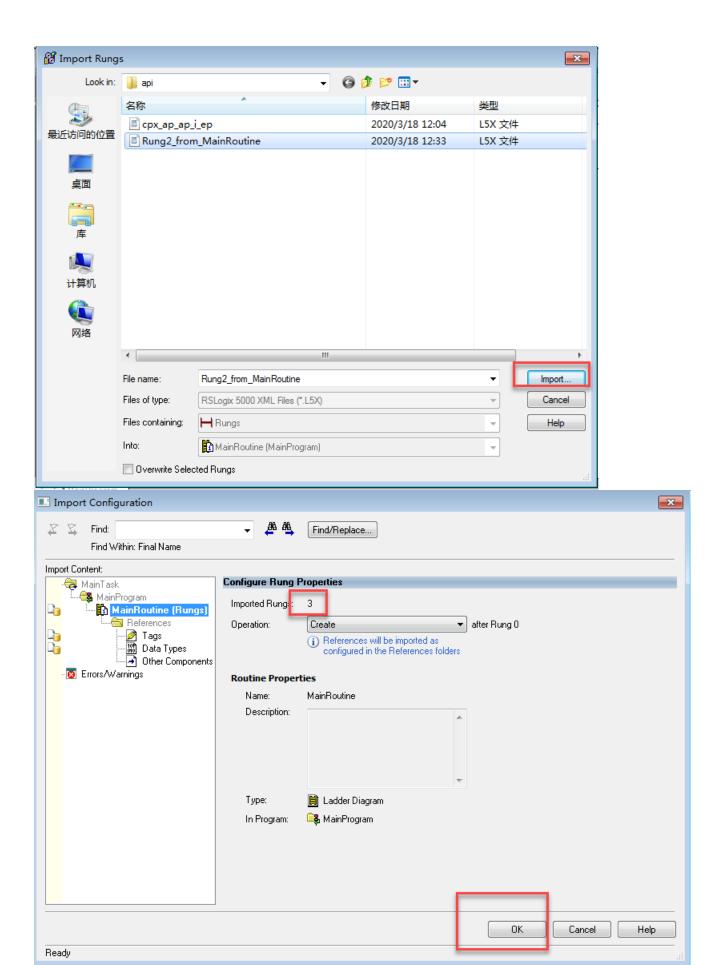


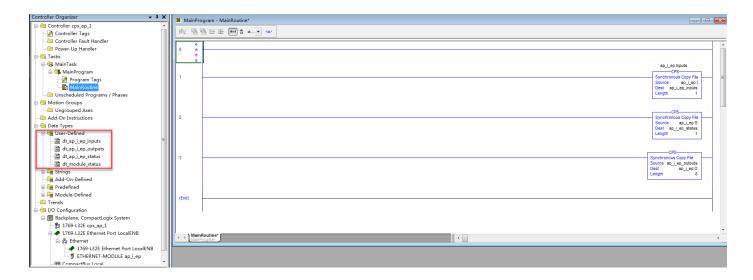
3.3 复制配置到用户程序中



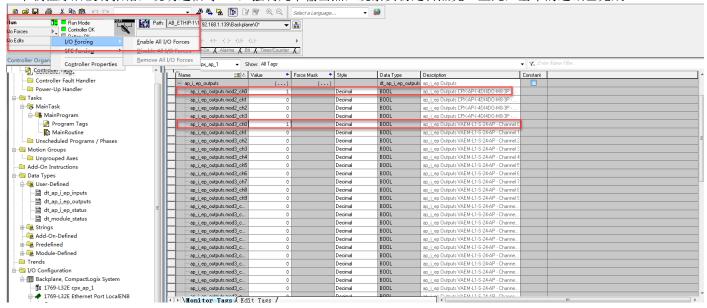

在这里可以留意看一下从站配置,如果不想导入 L5K 而想配置标准 IO,可以参考这里的配置。


3.4 导出程序块到用户程序中

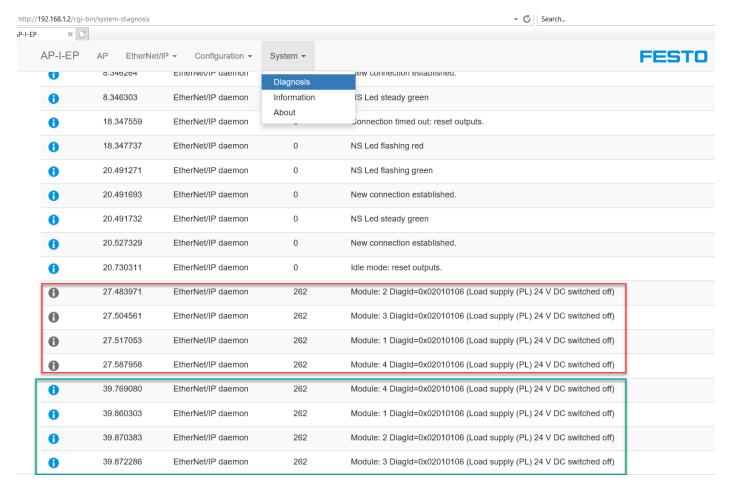

导出程序块到一个文件,并导入到最终的用户程序中。注意全选程序块,然后右键 export



在用户程序中导入



3.5 下载并 online


下载程序后没有报错,说明通信等 OK,强制几个输出点,观察实物是否点亮。至此,基本的通讯已完成。

4 故障诊断

4.1 Webserver 的诊断功能

浏览器中,灰色表示已经恢复的故障,蓝色当前状态,红色为严重故障报警,本次断开 PL 后恢复又断开,显示如下的状态。故障代码是 262,但请注意后面的细节:diagID=0x02010106

4.2 PLC 中查看故障代码

上面我们看到了故障代码是 0x02010106,那么程序中是什么呢?看下图是 16#0201_0106,两个结果相符。在操作手册中查看诊断代码---里边的说明也是 24V PL 断开了,这和本次测试相符。

Name == △	Value 🔸	Force Mask 🔸	Style	Data Type	Description
⊟-ap_i_ep:C	{}	{}		AB:ETHERNET	
+-ap_i_ep:C.Data	{}	{}	Hex	SINT[400]	
⊞- ap_i_ep:l	{}	{}		AB:ETHERNET	
⊞ -ap_i_ep:0	{}	{}		AB:ETHERNET	
⊟-ap_i_ep:S	{}	{}		AB:ETHERNET	
+-ap_i_ep:S.Data	{}	{}	Hex ▼	SINT[60]	
±-ap_i_ep_inputs	{}	{}		dt_ap_i_ep_inputs	ap_i_ep Inputs
±-ap_i_ep_outputs	{}	{}		dt_ap_i_ep_outputs	ap_i_ep Outputs
⊟-ap_i_ep_status	{}	{}		dt_ap_i_ep_status	
± ap_i_ep_status.global_status	16#0000_0004		Hex	DINT	
+ ap_i_ep_status.count_active_diagnosis	16#0005		Hex	INT	
ap_i_ep_status.module_with_latest_diagnosis	16#0001		Hex	INT	
± ap_i_ep_status.latest_diagnosis_code	16#0201_0106		Hex	DINT	
± ap_i_ep_status.module_1	{}	{}		dt_module_status	
+ ap_i_ep_status.module_2	{}	{}		dt_module_status	
+ ap_i_ep_status.module_3	{}	{}		dt_module_status	
+- ap_i_ep_status.module_4	{}	{}		dt_module_status	

1.1.5 Diagnostic messages

ID hex (dec)	Message	Description	n	
01 01 010B (16843019)	Short circuit/overload in sensor supply	A short-cird	uit/overload of the sensor supply was detec-	
		Remedy	 Check connected load for correct function, in particular for power consumption. Check sensor and wiring. 	
		Diagnost- ic status	Error	
01 01 010C	Output signal short-	Short circu	it/overload in output signal.	
(16843020)	circuit/overload	Remedy	 Check connected load for correct function, in particular for power consumption. Check wiring. 	
		Diagnost- ic status	Error	
02 01 0016 (33619990)	Undervoltage in logic supply PS 24 V DC	Undervoltage of the logic supply PS 24 V DC was detected.		
		Remedy	 Check logic supply PS. 	
		Diagnost- ic status	Warning Error	
02 01 0017	Overvoltage in logic	Overvoltag	e in the logic supply PS 24 V DC detected.	
(33619991)	supply PS 24 V DC	Remedy	– Check logic supply PS.	
		Diagnost- ic status	Error	
02 01 0105	Undervoltage in load	Undervolta	ge in the load supply PL 24 V DC detected.	
(33620229)	supply PL 24 V DC	Remedy	– Check load supply PL.	
		Diagnost- ic status	Error	
02 01 0106	Switch-off load supply	A switch-off of the load supply PL was detected. The caus		
(33620230)	PL 24 V DC	can be a de	eliberate shutdown by the emergency stop.	
		Remedy	 Check if the emergency stop was activated. Check load supply PL. 	
		Diagnost- ic status	Information	

4.3 实例:恢复通信

在实际使用中,故障状态恢复分两种情况:

- 1. EP 通讯中断,故障排除后,通讯自动恢复。
- 2. API 通讯中断,故障排除后,有些故障不会自动恢复。解决办法是断电重启,或者是程序设置(原理是断开 PLC 的通讯, AP-I-EP 会自动识别一次 AP 线路,从而恢复 AP 网络,注意此操作会重置本站的所有 IO),程序实例如下:

4.3.1 先建立一个变量表

]	test1		BOOL	Read/Write
1	+-ap_i ep_mode		INT	Read/Write

4.3.2 程序

用 SSV 指令,置位 MODE 第二位,原理和程序如下:其中 GSV 是读取状态,可忽略

Mode INT **GSV** 指定 Module 对象的当前模式。 SSV 含义 置位后,如果在控制器处于运行模式时 Module 对象 位 0 连接发生故障, 将导致生成主要故障。 如果置位,则在关闭与模块的所有连接后, 2 Module 对象将进入 "已禁止"状态。 Get System Value
Class Name Module
Instance Name ap i_ep
Attribute Name Mode
Dest ap_i_ep_mode

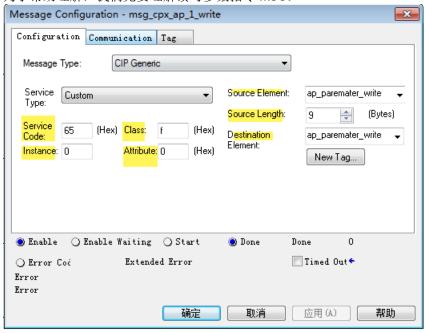
0+ Set System Value
Class Name Module
Instance Name ap_i_ep
Attribute Name Mode
Source ap_i_ep_mode ap_i_ep_mode.2 0 • SSVSet System Value
Class Name Module
Instance Name ap_i_ep
Attribute Name Mode
Source ap_i_ep_mode
0 ◆ test1 Move Source 0 Dest ap_i_ep_mode 0 +

4.3.3 程序测试

模拟一个故障, 先把 AP 模块拔下来一下, 然后恢复, 查看 status 报警数据。

⊟-ap_i_ep_status	{}	{}		dt_ap_i_ep_status
	16#0000_0100		Hex	DINT
□ ap_i_ep_status.count_active_diagnosis	16#0001		Hex	INT
+ ap_i_ep_status.module_with_latest_diagnosis	16#0004		Hex	INT
	16#0801_0127		Hex ▼	DINT
			-	

然后将 test1 触发,此时 ap_i_ep_mode 数据变为 4,观察实物变化。


Test1 置 off 后,系统全部恢复正常。检查 status,已恢复正常。

⊟-ap_i_ep_status	{}	{}		dt_ap_i_ep_status
+ ap_i_ep_status.global_status	16#0000_0000		Hex	DINT
+ ap_i_ep_status.count_active_diagnosis	16#0000		Hex	INT
+ ap_i_ep_status.module_with_latest_diagnosis	16#0000		Hex	INT
🛨 ap_i_ep_status.latest_diagnosis_code	16#0000_0000		Hex	DINT

5 参数读写

5.1 MSG 指令介绍

为了帮助理解,我们先要理解读写参数指令 MSG。

Service code 指的服务代码,比如写参数服务代码是 101=16 进制的 65.

Class 是对象类,比如参数对象的对象类是 F

Instance 是实例,webserver上可以看到的参数是 0,而手册中补充的大多为 1,TP2 为 2

Attribute 是类,一般是 0

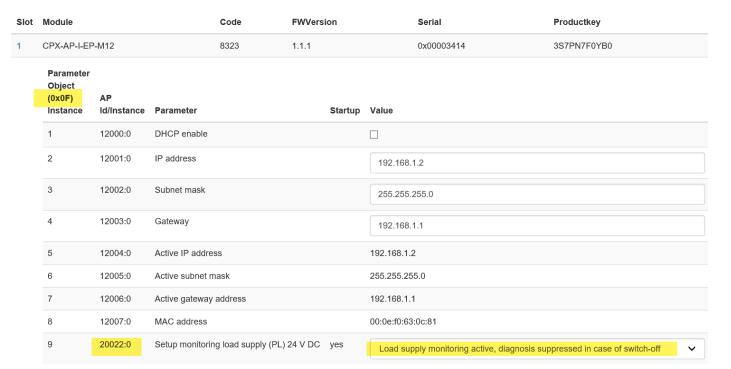
Source Length 根据格式和实际寄存器大小有变化

Source Element 和 Destination Element 则是用户自行定义的寄存器区域(标签),一般要大于实例属性中总的字节长度,否则无法获取全部的实例属性列表

5.2 PLC 写参数

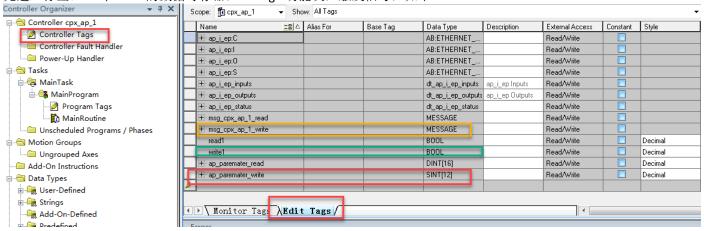
.5.1.1 介绍

本例子, 我们对 webserver 中看到的模块 1 的 9 号参数进行写入。

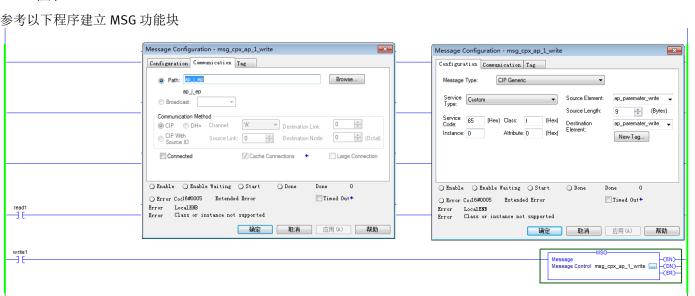

已有的信息:服务代码 101(16 进制=65),对象类 F,实例属性 O,类属性 O,数据长度 B+1=9,另外定义 D12 个 SINT的数据寄存器。

参数对象

- 对象类: 0x0F
- 实例: 1 ... x

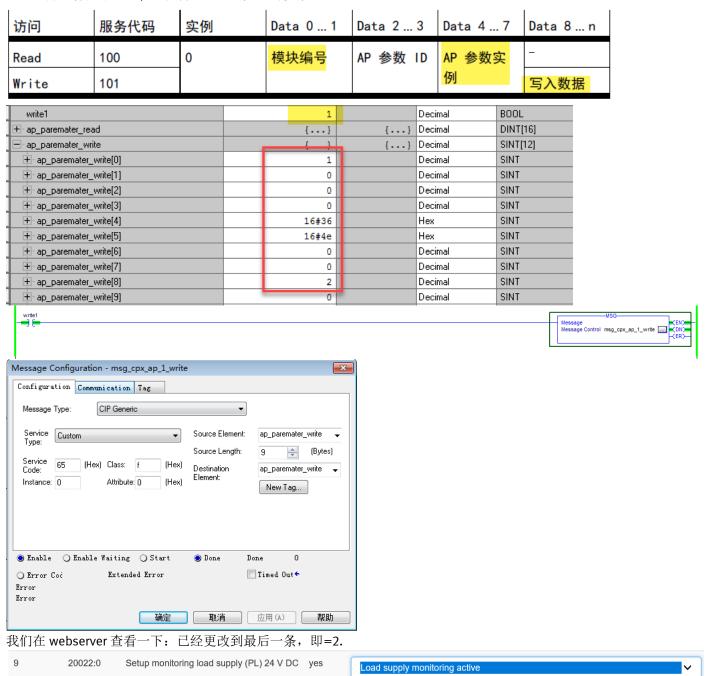

访问	服务代码	实例	Data 0 1	Data 2 3	Data 4 7	Data 8 n
Read	100	0	模块编号	AP 参数 ID	AP 参数实	-
Write	101				例	写入数据

同时,有些信息在 webserver 上也可看到,下图



.5.1.2 建立标签

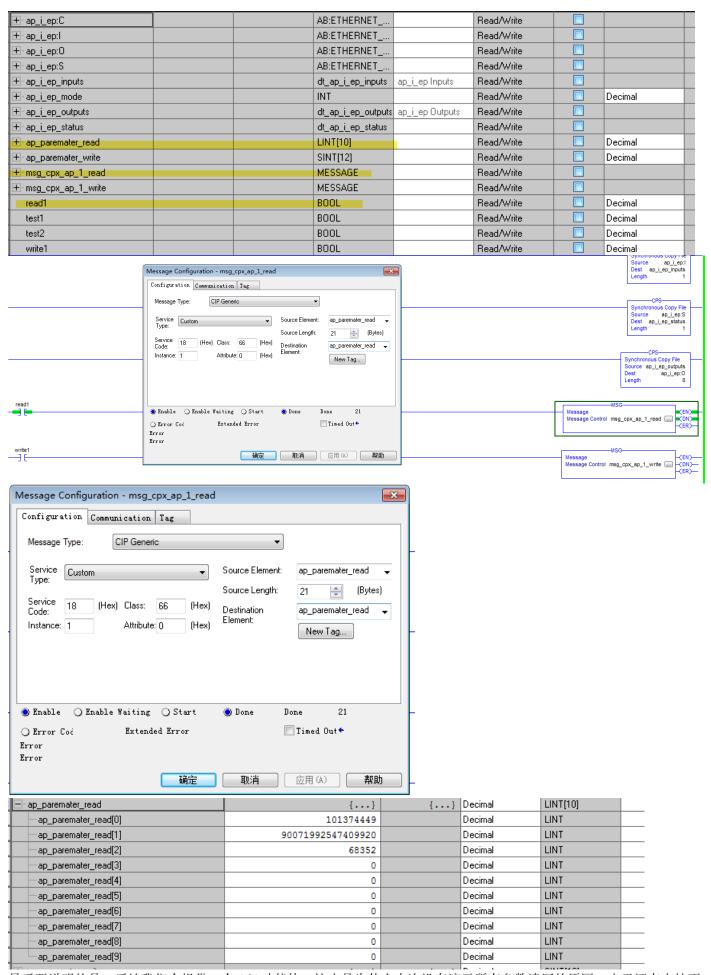
先建立标签: 12 个 SINT 的数据寄存器, messge 功能块, 触发信号, 如下



.5.1.3 程序

.5.1.4 测试

下载后在线,先给参数: 1 是指模块 1, 16#4e36=20022,指参数实例 ID。2 是要写入的参数。然后置 on 触发信号 write1.再查看程序,EN,DN 说明已经正确完成写参数。



5.3 PLC 读参数

本测试是读取故障记录中的历史故障信息。使用不同的 Instance 号,可以读取多条诊断记录,而 instance=1 总是读取最新一条记录(包含本条故障记录的时间戳,模块,子模块,通道,故障代码等等)。

先建立标签,并建立下图所示的程序,触发信号置 On 后,可以看到成功读取了数据。为了方便,没有把所有参数都列出来,仅演示功能。

最后要说明的是,后续我们会提供一个 AOI 功能块,这也是为什么本次没有演示所有参数读写的原因。由于还在支持更多的参数,所以本版本未写 AOI 的使用,后续 AOI 更新完成后,会跟进补充 AOI 的使用。

附录 A LED 诊断

模块诊断 [MD]	模块诊断 [MD]					
LED(红色, 绿色)	含义	补救方法				
	逻辑电源 PS 不可用。	检查逻辑电源 PS 的连接。				
熄灭						
绿灯亮	未激活模块诊断	-				
绿灯闪烁	模块诊断激活 严重程度"信息" 例如关断负载电源 PL	-				
红灯闪烁	模块诊断激活 严重程度"警告" 例如参数设置错误	执行相应的补救措施, 例如检查参数设置。				
红灯常亮	模块诊断激活 严重程度"错误" 例如负载电源 PL 欠压	执行相应的补救措施, 例如检查负载电源 PL。				
红灯快速闪烁	模块启动尚未完成。 系统通信尚未初始化。	-				
	模块识别(服务功能)	-				
绿灯快速闪烁						

模块诊断 LED 指示灯 [MD]

系统诊断 [SD]	系统诊断 [SD]						
LED(红色, 绿色)	含义	补救方法					
	逻辑电源 PS 不可用。	检查逻辑电源 PS 的连接。					
熄灭							
	未激活系统诊断	-					
绿灯亮							
绿灯闪烁	系统诊断激活 严重程度"信息" 例如模块上的负载电源 PL 不可用或模 块上的固件更新已激活。	-					
红灯闪烁	系统诊断激活 严重程度"警告" 例如模块参数设置错误。						
红灯亮	系统诊断激活 严重程度"错误" 例如模块上的传感器电源短路。						
绿灯快速闪烁	模块识别(服务功能)	-					

系统诊断 LED 指示灯 [SD]

负载电源 [PL]	负载电源[PL]					
LED(红色, 绿色)	含义	补救方法				
绿灯亮	负载电源 PL 可用。	-				
绿灯闪烁	负载电源 PL 不可用。	检查负载电源 PL。				
红灯闪烁	负载电源 PL 超出公差范围。	检查负载电源 PL。				

负载电源 LED 指示灯 [PL]

维护 [MT]	维护 [MT]						
LED 指示灯 (黄色)	含义	补救方法					
熄灭	不需要维护。	-					
	CPX-AP 自动化系统中至少有一个模块需要维护。	执行必要的补救措施 → 相关模块的指南。					

维护 LED 指示灯 [MT]

模块状态 [MS]	模块状态 [MS]						
LED 指示灯	含义	补救方法					
(绿色/红 色)							
		_					
	正常运行状态 						
绿灯亮							
	CPX-AP 自动化系统配置不完整或不正确	完成或纠正 CPX-AP 自动化系统的配置。					
绿灯闪烁							
	不可排除的错误	请与 Festo 的服务部门联系 → www. festo. com。					
红灯亮							
	可排除的故障	检查 CPX-AP 自动化系统的配置。					
红灯闪烁							
	CPX-AP 自动化系统正在自检。	-					
红灯/绿灯交 替闪烁							
	网络接口的逻辑电源不存在	检查逻辑电源。					
熄灭							

模块状态 [MS] LED 指示灯

网络状态 [NS]	网络状态 [NS]					
LED(绿色、 红色、橙色)	含义	补救方法				
绿灯亮	CPX-AP 自动化系统在线并具备网络连接(正常运行状态)。	-				
绿灯闪烁	CPX-AP 自动化系统在线并获得一个 IP 地址,但无已配置的网络连接。	检查 CPX-AP 自动化系统的配置,可能 未将 CPX-AP 自动化系统系统分配给主 站设备/扫描仪。				
红灯亮	通信失败。 设定了已在网络中使用的不允许的 IP 地址。	更正 IP 地址。				
红灯闪烁	一个或多个"I/O-Connections"处 于"超时状态"。	检查到主站设备/扫描仪的物理连接。				
红灯/绿灯交	CPX-AP 自动化系统正在自检。	-				
替闪烁 熄灭	CPX-AP 自动化系统离线。 未分配 IP 地址或未从 DHCP 服务器获 取 IP 地址。	检查网络连接。 检查 IP 寻址的设置。				

网络接口 [NS] LED 指示灯

连接状态 [TP1]	接状态 [TP1]、[TP2]					
LED 指示灯 (绿色)	含义	补救方法				
	无网络连接。	检查网络连接。				
熄灭	网络连接正常。 正在进行数据传输。	-				
绿灯亮	网络连接正常。 无数据传输。	-				

连接状态 [TP1]、[TP2] LED 指示灯

附录 B 状态和诊断对象

- 对象类: 0x65
- 实例: 1... 模块数量

属性	访问	名称	数据类型	描述/值
类属性				
1	Get	Revision	UINT	版本 1
2	Get	Max instances	UINT	对象的最大实例数位
3	Get	Num instances	UINT	对象的当前实例数1)
6	Get	Max class attribute	UINT	类属性 9 的最大数量

属性	ĺ	访问	夕华	₩ □ 米 □	描述/值		
		ᄱᄞ	名称	数据类型			
7		Get	Max instance	UINT	实例属性 4 的最大数量 (诊断代码)		
0			attribute				
8		Get	Global diagnosis state	UDINT	全局诊断状态		
					位 0: 正在写入配置数据		
_			_		位 1 31: → 模块诊断状态		
9		Get	Bus status	USINT	总线状态		
	实例属性						
1		Get	Module diagnosis	UDINT	模块诊断状态		
			state		位 0: 设备可用(通信正常)		
					位 1: 电流		
		_			位 2: 电压		
					位 3: 温度		
					位 4: 预留		
					位 5: 运动		
					位 6: 配置/参数		
					位 7: 监控		
					位 8: 通信		
					位 9: Safety		
					位 10: 内部硬件		
					位 11: 软件		
					位 12: 保养		
					位 13: 其他		
					位 14: 预留		
					位 15: 预留		
		-			位 16: 外部设备		
		1			位 17: 安全		
		-			位 18: 编码器		
		-			位 19 31: 预留		
2		Get	Submodule	USINT	子模块		
3		Get	Channe I	USINT	通道		
4		Get	Diagnostic code	UDINT	诊断代码		
4		det	DIAGNOSTIC CODE	ואוועט	沙哟口气4月		

附录C故障代码

ID hex(dec) 信息		说明		
02 01 0017	逻辑电源 PS 24 V DC	检测到逻辑电源 PS 24 V DC 过压。		
(33619991)	过压	补救方法 - 检查逻辑电源 PS。		
		诊断状态 Error		
02 01 0105	负载电源 PL 24 V DC	检测到负载电源 PL 24 V DC 欠压。		
(33620229)	欠压	补救方法 - 检查负载电源 PL。		
		诊断状态 Error		
02 01 0106 (33620230)	负载电源 PL 24 V DC 断开	检测到负载电源 PL 断开。原因可能是通过急停有意切断。		
		补救方法 - 检查急停是否激活。 - 检查负载电源 PL。		
ID hex (dec)	信息	说明		
02 01 0106 (33620230)	负载电源 PL 24 V DC 断开	诊断状态 信息		
02 01 013F	负载电源 PL 24 V DC			
(33620287)	监控	补救方法 - 检查负载电源 PL。		
		诊断状态 Error		
06 00 0109 (100663561)	设备启动参数被拒	AP 设备描述中指定的启动参数在设备中不存在或者与抗格说明不符。		
		补救方法 - 检查固件版本。		
		诊断状态 Error		
06 00 010A (100663562)	启动参数长度存在偏 差	设备中启动参数的长度与 AP 设备描述中的规定长度不一致。		
		补救方法 - 检查固件版本。		
		诊断状态 Error		
08 01 0127	与 AP 模块的通信中	与模块的 AP 系统通信中断。		
(134283559)	断	补救方法 - 重启 AP 系统。 - 检查电缆。		
		诊断状态 Error		
0B 03 00B0	用户文件 CRC 错误	在内部用户文件中发现 CRC 错误。		
(184746160)		补救方法 - 重新启动设备。 - 需要维修服务		
		诊断状态 Error		
0B 09 0128	APDD无效	出厂时保存在设备中的设备描述文件无效或缺失。		
(185139496)		补救方法 - 重新启动设备。 - 检查 AP 系统通信。 - 检查固件版本。 - 故障一再出现时,请联系 Festo 支持;		
		1 10		

	i	1	
ID hex (dec)	信息	说明	
0B 09 0129 (185139497)	启动 APDD 无效	诊断状态	Error

诊断状态 Error

补救方法

0B | 09 | 0129

(185139497)

启动 APDD 无效

- 故障一再出现时,请联系 Festo 支持部

出厂时保存在设备中的启动设备描述文件无效或缺失。

重新启动设备。检查 AP 系统通信。检查固件版本。

门。