TIA 环境下 Modbus RTU 通讯控制 VPPEO

刘功文 Festo 技术支持 2023 年 5 月 30 日

关键词:

TIA Portal, Siemens, Modbus RTU, VPPEO, 负压比例调压, 参数修改。

摘要:

本文档介绍了使用西门子 PLC 控制 VPPEO,实现负压比例调压阀的实例。文档主要内容包括软硬件安装,RS485 通 讯设置,TIA 组态以及 PLC 使用程序块实现负压比例调压及参数修改功能。

目标群体:

本文仅针对有一定自动化设备调试基础的工程师,需要对 Festo VPPEO 气动以及西门子 TIA Poral 有一定了解。

声明:

本文档为技术工程师根据官方资料和测试结果编写,旨在指导用户快速上手使用 Festo 产品,如果发现描述与官方 正式出版物冲突,请以正式出版物为准。

我们尽量罗列了实验室测试的软、硬件环境,但现场设备型号可能不同,软件/固件版本可能有差异,请务必在理 解文档内容和确保安全的前提下执行测试。

我们会持续更正和更新文档内容, 恕不另行通知。

目录

1	VPP	EO 概述	. 4
2	硬作	+/软件环境	. 4
	2.1	电气连接	. 4
	2.2	气动部分	. 5
	2.3	RS485 通讯设置	. 5
3	TIA	Portal 通讯调试	. 7
-	3.1	通讯组态	.7
	3.2	主站编程	. 8
	3.3	下载程序并监控变量	10
4	VPP	FO 运行测试	10
'	••••		

1 VPPEO 概述

VPPEO 为负压比例调压阀,本文测试型号: VPPEO-6L-1-G14-1V0H-C-D2-CS,通过 RS485 通讯实现负压比例调压功能。

2 硬件/软件环境

本文档适用于西门子 S7-1200 PLC 在 TIA 环境下,通过 CM1241 RS485 主站模块通讯控制 VPPEO,系统构架及硬件 连接如下。

编号	描述	数量
1	负压比例阀	1
2	SPTW 压力传感器	1
3	控制及电源电缆	1
4	传感器线缆	1
5	RS485 通讯电缆	2
6	1200PLC + CM1241 RS485 模块	1

2.1 电气连接

VPPEO 负压比例阀的供电电缆为编号 3 线缆,其 M8 接头与负压比例阀 E1 口连接,开放端与客户控制器连接,开放端电缆定义如下表:

Colour/颜色	Definition/定义
Brown/棕线	+24V DC /24 伏直流
Blue/蓝线	GND/接地
White/白线	NG
Black/黑线	Feedback/反馈量

供电线缆定义

VPPEO 负压比例阀的反馈端为编号 4 号线缆,其 M8 接头与真空比例阀的 E2 口连接, M12 头与 SPTW 压力传感器连接。

VPPEO 负压比例阀通讯为编号 5,其 M8 接头与真空比例阀 C1,C2 口连接,C1 口为 RS485 通讯输入口,C2 口为 RS485 通讯输出口,其开放端定义如下图所示。

RS485 通讯插头定义

2.2 气动部分

Port number/气口编号	Definition/定义
1	Vacuum port/真空口
2	Working port/工作口
3	Relief port/补气口
12	Pilot port/先导气口
A	Silencer or atmosphere /消音器或大气

2.3 RS485 通讯设置

VPPEO 比例阀通讯协议为 Modbus RTU, 默认通讯参数如下表:

Communication specification /通讯说明				
Mode /模式	RS485			
Communication /通信	half-duplex communication /半双工通讯			
Communication Protocol /通讯协	Modbus RTU			
议				
Transmission Rate /传输速率	9600 /19200 /38400 /115200 bps			
Data Bit /数据位	8 Bit /8 位			
Parity Bit /奇偶校验位	None /无			
Stop Bit /停止位	1Bit /1 位			
Transmission Distance /传输距离	Max.20m /最远 20 米			
Slave Address /从站地址	1247			
Connection /连接数	1: N (Max 32 sets) /1 至 32			

如下图框内从左到右 2 个拨码开关用于设定从站波特率,默认拨码波特率为 9600bps。

Baud: 9600bps /波特率: 9600bps

Baud Rate Truth Table / 波特率真值表						
Bit8	Bit9	Baud				
0	0	9600				
1	0	19200				
0	1	38400				
1	1	115200				

默认选择终端匹配电阻,如下状态:

Terminal matching resister selected/选择终端匹配电阻

3 TIA Portal 通讯调试

3.1 通讯组态

1、在新建的项目中增加一个1200站点,设置Profinet的IP地址"192.168.0.1",在设备视图中点击PLC,添加CM1241 RS485模块,如下图所示:

2、在程序块添加MB_COMM_LOAD功能块以对Modbus RTU协议的端口进行通讯组态及初始化。

对于功能块"MB_COMM_LOAD"功能块管脚含义如下表所示:

参数	声明	数据类型	说明				
REQ	Input	Bool	在上升沿执行指令				
PORT	Input	PORT	通讯端口的硬件标识符				
BAUD	Input	UDINT	波特率				
PARITY	Input	UINT	奇偶校验:				
			0-无校验, 1-奇校验, 2-偶校验				
FLOW_CTRL	Input	UINT	流控制,默认值				
RTS_ON_DLY	Input	UINT	RTS 延时,默认值				
RTS_OFF_DLY	Input	UINT	RTS 关断延时,默认				
RESP_TO	Input	UINT	通讯超时,默认值为 1000ms				

MB_DB	Input		主站或从站指令的背景数据块,示例中 PLC 的 RS485 模块为主站使用
DONE	Output	Bool	Done 为 1 表示通讯参数组态完成且未出错
ERROR	Output	Bool	0: 无错误
			1:报错,出错原因在参数 STATUS 中指示
STATUS	Output		端口组态错误代码

3.2 主站编程

1、 博图中的 CM1241 模块串口可以设置成主站,也可以是从站,如下图是做为主站使用,读写从站 VPPEO 负压比 例阀参数。

对于功能块"MB_MASTER"功能块管脚含义如下表所示:

参数	声明	数据类型	说明
REQ	Input	Bool	REQ =1,请求将数据发送到 Modbus 从站
MB_ADDR	Input	UINT	Modbus RTU 从站地址:
			默认地址范围: 0至 247
			扩展地址范围: 0至 65535
MODE	Input	USINT	选择 Modbus 请求模式 (0 = 读取, 1 = 写入或诊断)
DATA_ADDR	Input	UDINT	制定 Modbus 从站中将供访问的数据起始地址(VPPEO 起
			始地址)
DATA_LEN	Input	UINT	数据长度:数据访问的位数或字数
DATA_PTR	Input	VARIANT	用于 Modbus 从站读取或写入数据的数据块,注意该数据
			块必须为非优化数据块 (支持绝对寻址)
DONE	Output	Bool	Done 为1表示读取或写入数据完成且无任何错误
Busy	Output	Bool	0: 无"MB_MASTER" 事务在处理中
			I: MB_MASIER 事务正在处理中
ERROR	Output	Bool	0:无错误
			1:出错。错误代码由参数 STATUS 指示

2、创建一个全局数据块用于匹配主站功能块"MB_MASTER"的管脚参数"DATA_PTR",本例中为DB2"485通信数据", 用于存储从站通信数据,需要注意的是该数据块必须为非优化数据块(支持绝对寻址),在该数据块的属性中不勾选"优化的块访问"选项,如下图所示:

3、在 DB2" 485 通信数据"中添加缓存数据区,用于主站功能块与 VPPEO 通讯数据读写。

	2	ÿ	Ē	II,	。 🛃 🔃 🚏 保持实际	值 骗 快照 降	🖳 将快照	盈值复制到起始值中
485通信数据								
▼ TEST_VPPEO	^		_	名称	R	数据类型	偏移量	起始值
💣 添加新设备		1	-	• •	Static			
晶 设备和网络		2	-	•	Static_1	Bool 🔳	0.0	false
PLC_1 [CPU 1214C DC/DC/DC]		3	-00	•	MB_comm_load_error	Bool	0.1	false
🔢 设备组态		4	-00	•	MB_comm_load_status	Word	2.0	16#0
鬼 在线和诊断		5	-	•	BIT	Array[010] of Bool	4.0	
▼ 🛃 程序块		6	-00	•	MB_Master_REQ	Array[010] of Bool	6.0	
📑 添加新块		7	-00	•	MB_Master_Done	Array[010] of Bool	8.0	
📲 Main [OB1]		8	-00	•	MB_Master_Error	Array[010] of Bool	10.0	
🧧 485通信数据 [DB2] 🔪		9	-00	•	MB_Master_Busy	Array[010] of Bool	12.0	
MD_DB [DB4]		10	-	•	 MB_Master_status 	Array[010] of Word	14.0	
▶ 🔤 系统块		11	-	F	Set_target_pressure	Int	36.0	0
▶ 🙀 工艺对象		12	-00	•	Get_pressure_from_S	Int	38.0	0
▶ 🔤 外部源文件		13	-	•	Get_pressure_pilot_ch	Word	40.0	16#0
▶ ᇩ PLC 变里		14	-	-	Set_Kp_PID	Word	42.0	16#0
▶ 🛅 PLC 数据类型		15	-	•	Set_Ki_PID	Word	44.0	16#0
▶ 🤜 监控与强制表		16	-	•	Set_Kd_PID	Word	46.0	16#0
▶ 📴 在线备份		17	-	•	轮询	Byte	48.0	16#0
🕨 🔀 Traces	\mathbf{v}	18	-	•	Step	Word	50.0	16#0
✓ 详细视图		19	-	•	Set_target_pressure1	Real	52.0	0.0
		20	-	•	Get_pressure_SPAW1	Real	56.0	0.0

3.3 下载程序并监控变量

完成上面的步骤后,下载项目到CPU1200中,然后在监控表中添加相关变量,如下图: TEST_VPPE0 ▶ PLC_1 [CPU 1214C DC/DC/DC] ▶ 监控与强制表 ▶ 监控表_1

Ý	👻 🏥 🕼 🖉 16 🖉 吟 🖤									
	i	名称	地址	显示格式	监视值	修改值				
1		"485通信数据".Set_target_pressure	%DB2.DBW36	无符号十进制		6500				
2		"485通信数据".Get_pressure_from_SPTW	%DB2.DBW38	无符号十进制						
3										
4		"485通信数据".Set_Kd_PID	%DB2.DBW46	无符号十进制		1500				
5		"485通信数据".Set_Ki_PID	%DB2.DBW44	无符号十进制		1000				
6										
7		"485通信数据".Set_target_pressure1	%DB2.DBD52	浮点数		-35.0				
8		"485通信数据".Get_pressure_SPAW1	%DB2.DBD56	浮点数						
9			<新増>							

- •

4 VPPEO 运行测试

VPPEO 支持以下功能码和功能参数:

Function code /功能代码	Type /类型	Function /功能
0×03	Read Holding Registers /读保持寄存器	Read register (16 bit), registers can be read by specifying the start address and the number of holding registers /通过指定寄存器起始地址和寄存器数量读寄存器 (16位)
0×04	Read Input Registers /读输入寄存器	Read register (16 bit), registers can be read by specifying the start address and the number of holding registers /通过指定寄存器起始地址和寄存器数量读寄存器 (16位)
0×06	Write Single Register /写单个寄存器	Write single register (16 bit), registers can be read by specifying the start address /通过指定寄存器起始地址写单个寄存器
0×10	Write Multiple Registers /写多个寄存器	Write multiple registers (16 bit), registers can be read by specifying the start address and the number of holding registers. /通过指定寄存器起始地址和寄存器数量写多个寄存器

Setting for Function Data /设置功能数据

Address /地址	Type /类型	Value /值	Access /访问	Format /格式	Modbus 地址
0×0000	Set target pressure/设定目标压力	010000	R/W /读写		40001
0×0001	Get pressure from SPTW/获取 SPTW 的压力	010000	R /只读		30002
0×0002	Get pressure from pilot chamber/获取先导腔 的压力	060000	R /只读	Unsigned	30003
0×0003	Set PID parameter: Kp/设置 PID 参数 Kp	010000	R/W /读写	short int /无符号短	40004
0×0004	Set PID parameter: Ki/设置 PID 参数 Ki	010000	R/W /读写	整型	40005
0×0005	Set PID parameter: Kd /设置 PID 参数 Kd	010000	R/W /读写		40006
0x0006	Set projected parameter: step /设置轨迹规划 参数 step	010000	R/W /读写		40007

1、 设置 VPPEO 比例阀输出压力

比如设定压力为-89kpa(寄存器地址为 0x0000,对应 Modbus 起始地址为 40001),PLC 接收数据为:

(-89 +100) ×100 = 1100 (0x044C),按如下图设置 DB3 "MB_MASTER_DB"功能块相关参数,待功能块的 Done 为1

时,表示成功写入参数。

			。)))	设定真空压力 为-89kpa,PLC接		
	台 柳	地址	显示格式	监视	值 化	【的处理数据
	"485通信数据".Set_target_pressure	%DB2.DBW36	无符号十进制	(110	0)	6500
	"485通信数据".Get_pressure_from_SPTW	%DB2.DBW38	无符号十进制	111	6	0300
	"485通信数据".Set_Kd_PID	%DB2.DBW46	无符号十进制	100	0	1000
	"485通信数据".Step	%DB2.DBW50	天符是十进制	100		1000
	"485诵信劫据" Set target pressure1	%DB2 DBD52	「「「「」」」「「」」「「」」」「「」」「「」」」「「」」」「」」「」」「」」	100		600
	lace's Attion -	NO 02.00032	汗只到	-89.0	U	-89.0

2、读取 SPTW 传感器真空反馈值

压力传感器压力显示: -68.2kPa(寄存器地址为 0x0001,对应 Modbus 地址为 0x30002),PLC 实际数据传送处理: (-68.2 + 100.0) x 100 = 3180 (0x0C6C)。

2 12 14 10 9, 9, 9, 97 m m	Die 1.1		all all all	PLC实际接 收的数据	
"485通信数据" Set torget anone	地址	显示格式	监视值	7/	修改值
"acc's the second second second	%DB2.DBW36	无符号十进制	3200		6500
405)通信刻语:Get_pressure_from_SPTW	%DB2.DBW38	无符号十进制	3181	Selection of	
"485通信数据".Set_Kd_PID	%DB2.DBW46	无符号十讲制	1500		1500
"485通信数据".Set_Ki_PID	%DB2.DBW44	无符号十进制	500	Section 120	500
"485通信数据".Set_target_pressure1	%DB2.DBD52	浮占数	-68.0		-68.0
"485通信数据".Get_pressure_SPAW1 📔	%DB2.DBD56	浮占数	-1-68 19		00.0 hz
	-9F-400	- A Music		Contraction Contraction L	

备注:两个特殊的值

当设定压力数值为 20000(寄存器地址为 0x0000,对应 Modbus 起始地址为 40001)时,主阀完全关闭,2、3 口连通,PID 不起作用。

当设定压力数值为 30000(寄存器地址为 0x0000,对应 Modbus 起始地址为 40001)时,主阀完全打开,1、2 口连通,PID 不起作用。

3、写 PID 参数中的比例参数 Kp

Kp=Kp默认值*[发送数据]/1000,发送数据的取值范围为[0,10000]。

比如发送数据是 1500(PLC 发送十六进制数据为 0x05dc),数据处理: Kp = Kp 默认值 x 1.5。

在单个保持寄存器写完成之后,应答报文与请求报文相同。 寄存器地址为协议地址: 0x0003 对应 PLC 地址: 0x40004 (比例参数 Kp) 0x0004 对应 PLC 地址: 0x40005 (积分参数 Ki) 0x0005 对应 PLC 地址: 0x40006 (微分参数 Kd) 0x0006 对应 PLC 地址: 0x40007 (设置轨迹规划参数 Step) 其他的 PID 参数类似处理。

4、轨迹规划参数 Step

Step 是把设定目标分割成许多小段的目标量,在 PID 控制运算之前,先进行轨迹规划,每个周期通过 Step 设定 PID 新的目标量 Target,最终达到真正的设定目标值。

Step 指的是周期 Y 轴设定目标递增的量,影响达到设定值的速度, Step 值越大, 达到设定目标值的斜率越大, 如下图所示。

