故障应对

- □ 一般是软件通讯故障,可检查故障位(E769—E784)有无,对应下表分析故障原因 并作出相应措施; Porsche MQB Error-Matrix_CN.pdf
- 无法解决时,更换硬件,对于伺服模块,建议整体更换,如果是主气缸故障,建议
 直接更换备枪,以尽快恢复生产,主气缸可在线下维修检测;
- □ 焊枪机械部分校正后,需要用新电极帽做位置标定;
- □ 更换了伺服模块或主气缸,需要用新电极帽做位置标定以及力标定。

3-1、故障代码详解

错代	错误描述	故障排除
1	测量系统错误	- 检查驱动电缆
	气缸电缆没有连接	
2		
3	无气源压力	- 检查气源压力和气管系统
		- 检查MSEB 阀是否打开(LED 灯亮)
		- 检查MSEB阀的电缆
4	电极力超出范围	-检查电极臂是否被阻碍
	超出焊枪最大输出力	- 检查 WinSPZ 软件中最大电极力的设置
		- 检查行程校准
5	内部数据错误	- 利用WinSPZ下载参数,并重启系统
	基本参数校验出错	
6	电极位置无法到达	-检查机器人发送的定位数据
	机器人停止定位无法达到的位置,或电极臂	- 检查 WinSPZ 软件中最大电极开度参数
	之间有障碍物	- 检查行程校准比率
		- 检查机器人软件中软限位设置
7	压力传感器错误	-检查电缆
		-更换气缸

故障排除 2/3

8	无效的设定力	-机器人发送的设定力无效
	力的设定值无效	-检查WinSPZ 软件中最大/最小电极力参数
9	定位超时	-检查定位区域是否有障碍物
	定位未完成	- 检查MPYE阀的电缆
10	设定力未达到	- 检查供气压力
	(超时)	- 检查MPYE阀
11	诊断功能	- 检查主气缸内隔离法的功能。必要时更换主气缸。再次诊
	隔离阀切换后检测到主气缸压力位置变化。	断后消除故障。
12	平衡缸超时	- 检查 MPYD阀
	平衡缸压力未达到	- 检查供气压力(最小 5 bar)
13	参数错误	- 通过WinSPZ软件下载所有参数
		- 重启控制器
14	超过系统最大摩擦力	- 检查摩擦力升高的原因
		- 润滑机械导轨和轴承
15	n.V.	
16	错误的程序号	检查机器人发送来的程序号
17	焊枪变压器过热	- 检查Input 0是否关闭 (过热传感器信号)
18	n.V.	
19	n.V.	

故障排除 3/3

20	output 0 短路	排除短路
21	output 1 短路	排除短路
22	output 2 短路	排除短路
23	output 3 短路	排除短路
24	n.V.	
25	n.V.	
26	增益参数错误	调整位置和力的增益参数
27	n.V.	
28	电极帽更换错误	-电极轴磨耗过多
	打磨前测量超过公差范围	- 电极帽丢失
		- 安装了错误的电极帽
		- 检查 WinSPZ 软件中几何公差参数
29	电极帽寿命到达	- 更换电极帽
	电极帽最大磨损量到达	
30	打磨错误	- 检查打磨装置
		- 电极帽上有磨屑
		- 超过最小/最大打磨公差
31	电极帽丢失	- 检查电极帽是否安装
32	n.V.	

FESTO

1、从焊枪上拆下疑似故障的伺服模块,更换新的。

2、用WinSPZ软件连接控制器。

1. 打开连接助手

2. 选择串口号或ProfiNet

3. 选择控制器, 然后点击连接

FESTO

将数据从项目下载到控制器(写) 注意!每次修改过参数都要 点击下载

从控制器上传数据到项目(读)

3-2、更换伺服模块完整流程

3、导入原先的.SPZ数据文件(建议事先保存在电脑中)。

2. 选择之前保存在电脑里的SPZ文件

3. 将文件中的参数下载到控制器

提示:

每一种型号的焊枪都有一个优化 号的参数包,适用于位置控制、 力控制和第七轴控制。

3-2、更换伺服模块完整流程

4、位置标定。

通过轴零点标定,确定零点位置、转换比和最大电极开度

1. 安装新的没有打磨的电极帽

(提示:设定闭合焊枪的电极力为3kN)

2. 激活PC控制按钮,并确认US2为on

en.

3. 设定气缸行程

电极闭合后重新打开的气缸设定行程:

- C-型枪气缸设定行程10 mm
- X-型枪气缸设定行程10 mm
- 4. 开始标定, 焊枪闭合直到电极接触

5. 写入测量得到的电极间的距离

比率1 = 电极行程/ 气缸行程,通过计算得到 对于C- 型枪写入10 mm 对于 X- 型枪 写入电极间距的实际测量值

位置标定		
步骤1: 输入行程点击开始标定位置 在焊钳关闭后气缸的行程 3 10.0 mm 开始 4		
步骤2:测里电极的开度 测得电极的行程(两电极之间的距离) 10.0 mm 5		
步骤3:将电极打开到最大的开度 气缸的最大行程 147.2 mm 开始		
步骤4:测量电极的最大开度 电极的最大开度(两电极之间的距离) 0.0 mm 147.0 mm		
ок 取消		

Note: 零点标定对于焊枪的正常运行很重要

4、位置标定。
确定电极最大开度
6. 开始检测电极最大间距
7. 显示气缸的最大行程 自动计算
8. 显示电极间最大距离 自动计算= 气缸打开行程* 比率1
9. 写入测量得到的电极间距 通过计算得到比率2
10. 点击 OK,接受标定数据 标定号的值被存储在控制器的EEPROM
标定完成之后,总线状态指示:
● 位置标定完毕
注意:轴零点标定前一定要安装新电极帽

3-2、更换伺服模块完整流程

位置标定	
	步骤1:输入行程点击开始标定位置 在焊钳关闭后气缸的行程 10.0 mm 开始
步骤2:测量电极的开度	
测得电极的行程(两电极之间的距离)	
10.0 mm	
	步骤3: 将电极打开到最大的开度
7	147.2 mm 开始 6
步骤4:测量电极的最大开度	
	电极的最大开度(两电极之间的距离)
8	0.0 mm 147.0 mm 9
	10 oc 取消

5、夹紧力标定(可选)。

确定气缸推力和电极力之间的比率

- 将气缸放置于水平位置
- 检查气源压力
- 1. 将焊枪打开60mm,点击OK
- 2. 选择'值1'
- 输入气缸设定推力 (气缸推力~电极力*比率)
- 4. 点击'建立夹紧力'
- 5. 测量电极力并输入测量值
- 6. 选择'值2'
- 7. 输入气缸设定推力
- 8. 点击'建立夹紧力'
- 9. 测量电极力并输入测量值

FESTO

3-2、更换伺服模块完整流程

5、夹紧力标定(可选)。

确定弯曲值和移动电极臂的重量

- 1. 点击'打开焊枪20mm'
- 2. 选择'值1'
- 3. 点击'测量所得重量'
- 4. 测量得到的弯曲值将被自动写入
- 5. 测量重量
- 6. 选择'值2'
- 7. 点击'测量所得重量'
- 8. 测量得到的弯曲值将被自动写入
- 9. 点击'OK',参数将被存储在控制器
- 10. Value = 0 关闭重力补偿功能

FESTO

6、标定完后焊枪在最大开度,将焊枪点动关到较小的开度,防止出现软限位错误。

3-3、更换备枪

FEST

机械部分更换好后,同样需要执行3-2的第2、3、4、5、6步骤。

3-4、主气缸维修检测(线下进行)

- ▶ 密封件更换
- ▶ 位移传感器更换

3-5、固件升级

最新为0.64版本

- 1. 连接控制器
- 2. 打开'Firmware download'
- 3. 点击'open'
- 4. 选择文件' xxx.mhx'
- 5. 点击'Start'
- 6. 所选固件将被下载到控制器

