Sysmac 环境下 EthernetIP 通讯控制 CPX-E-EP

冯增建 Festo 技术支持 2020 年 7 月 24 日

关键词:

Sysmac Studio, omron, EtherNet/IP, CPX-E-EP

摘要:

本文介绍了使用 omron PLC 控制 Festo CPX-E-EP 的实例,通讯协议为 EtherNet/IP,编程软件为 Sysmac Studio。文档主要内容包括如何更改通讯模块 IP 地址、Sysmac Studio 通讯设置、故障读取等。

目标群体:

本文仅针对有一定自动化设备调试基础的工程师,需要对 Festo CPX-E 系统以及 Sysmac Studio 有一定了解。

声明:

本文档为技术工程师根据官方资料和测试结果编写,旨在指导用户快速上手使用 Festo 产品,如果发现描述与官方正式出版物冲突,请以正式出版物为准。

我们尽量罗列了实验室测试的软、硬件环境,但现场设备型号可能不同,软件/固件版本可能有差异,请务必在理解文档内容和确保安全的前提下执行测试。

我们会持续更正和更新文档内容, 恕不另行通知。

目录

1	l 软件环境	4
2	2 硬件接口	4
	2.1 产品配置	4
	2.1.1 CPX-E-EP	4
	2.1.2 CPX-E-16DI	
	2.1.3 CPX-E-8DO	
	2.2 显示元件	_
	2.2.1 CPX-E-EP	_
	2.2.2 CPX-E-16DI	
	2.2.3 CPX-E-8DO	
	2.3 连接元件	
	2.3.1 网络接口	
_	2.3.2 电源接口	
3		
	3.1 通过拨码盘设置 IP	
	3.2 通过 FFT 软件设置 IP 地址	
	3.3 通过 BOOTP/DHCP Server 设置 IP	
,	3.4 恢复出厂设置	
4	4 Sysmac Studio	
	4.1 下载 EDS 文件	
	4.2 确定通讯数据的对象实例	
	4.3 Sysmac Studio 软件配置	
	4.4 过程 IO 数据实例(ID 100/101)	
5	5 1/0 诊断	
	5.1 通过 CPX-E-EP 的 DIL 拨码开关,激活 IO 诊断接口	
	5.2 确定通讯数据的对象实例	
	5.2.1 实例 101(输入数据)	
	5.2.2 实例 100(输出数据)	
	5.2.3 数据整理	
	5.3 Sysmac Studio 软件配置	
	5.4 I/O 诊断接口的工作原理	
	5.5 实例	
	5.5.1 实例 1 将 CPX-E-8DO 模块的电源拔掉	
	5.5.2 实例 2 将 CPX-E-8DO 模块的 X0.0 端口短路	24
骄	附录 LFD 指示灯诊断	27

1 软件环境

型号	固件/版本	描述
CPX-E-EP	Rev 1	EthernetIP总线节点
CPX-E-16DI	Rev 1	数字输入输出模块
CPX-E-8DO	Rev 1	数字输入输出模块
欧姆PLC NJ301-1100	V1.14	欧姆龙PLC
Sysmac Studio	V1.3	PLC编程软件

硬件接口

产品配置

CPX-E-EP 2.1.1

- 1 LED 指示灯
- ② 旋转开关和 DIL 开关
- ③ 工作电源 U_{EL/SEN} 端子条 [XD] ④ 端子条锁定装置
- 5 网络接口 [XF2]
- 6 互连元件
- 7 网络接口 [XF1]

2.1.2 CPX-E-16DI

- 1 LED 指示灯
- ② 输入端端子条 [X0 ... X7]
- 3 端子: 4 互连 端子条锁定装置

2.1.3 CPX-E-8DO

- 1 LED 指示灯
- ② 输出端端子条 [X0 ... X3]
- ③ 负载电源 U_{OUT} 端子条 [XD]
- 4 端子条锁定装置
- 5 互连元件

显示元件 2.2

CPX-E-EP 2.2.1

- 1 网络专用的 LED 指示灯:
 - 模块状态 [MS] (绿色、红色、橙色)
 - 网络状态 [NS] (绿色、红色、橙色)
 - 连接/数据传输 [XF1]/[XF2] (grün)
- 2 系统专用 LED 指示灯:
 - 工作电压 U_{EL/SEN} [PS] (绿色)
 - 负载电源 U_{OUT} [PL] (绿色)
 - 系统故障 [SF] (红色)
 - Force mode [M] (黄色)

2.2.2 CPX-E-16DI

- 1 模块故障[片](红色)
- 2 输入端 0 ... 15 状态 (绿色)
 - 输入端 0 [X0.0]
 - 输入端 1 [X0.1]
 - 输入端 2 [X1.0]

2.2.3 CPX-E-8DO

- ① 模块故障 [片](红色) ② 输出端 0 ... 7 通道故障(红色)
 - 输出端 0 [X0.0]
 - 输出端 1 [X0.1]
 - 输出端 2 [X1.0]
- ③ 输出端 0 ... 7 状态 (黄色)
 - 输出端 0 [X0.0]
 - 输出端 1 [X0.1]
 - 输出端 2 [X1.0]
- 4 负载电源 U_{OUT} [PL] (绿色)

2.3 连接元件

2.3.1 网络接口

接口 [XF1]、[XF2]		信号	名称
	1	TD+	发送数据 +
	2	TD -	发送数据 -
	3	RD+	接收数据 +
│	4	n. c.	-
│ │ │ │ श्≡ │	5	n. c.	-
	6	RD -	接收数据 -
	7	n. c.	-
	8	n. c.	-
	1)	屏蔽	功能接地

2.3.2 电源接口

接口 [XD] 1)	信号	
	0 +24	V DC 工作电源 U _{EL/SEN}
	1	
26 1 3	2 0 V	DC 工作电源 U _{EL/SEN}
	3	

1)接口 XD.0 和 XD.1 以及 XD.2 和 XD.3 分别相互连接在端子条中。

3 CPX-E-EP 的 IP 地址设定

3.1 通过拨码盘设置 IP

CPX-E-EP 模块采用拨码设置 IP 地址时,默认网段为 192.168.1.*,旋转拨码盘设置 IP 地址的第四段,旋转拨码优先级最高。指定 EP 模块走 EtherNet/IP 协议通讯时,可将旋转开关置于 300-555 之间。指定 EP 模块走 Modbus TCP 协议通讯时,将旋转开关置于 600-855 之间。当旋转开关置于 1-255 时,则可以同时使用 EtherNet/IP 和 Modbus TCP 协议。首先发送输出端的协议获得输出端控制权限。当旋转拨码数值无效时,会将 IP 地址重置为动态地址设定(DHCP)。

3.2 通过 FFT 软件设置 IP 地址

通过旋转拨码给 EP 模块设定一个 1~255 范围内的有效 IP 地址,重启后生效。打开 FFT 软件,然后在扫描出的设备中找到对应的 CPX-E-EP 模块,点击右键选中 network。之后在设置界面中选中 Use the following IP-Address 然后根据需要设定 IP 地址(可修改网段),最后点击确定。

3.3 通过 BOOTP/DHCP Server 设置 IP

当 CPX-E-EP 模块 IP 地址为动态地址设定(DHCP)时,可通过 BOOTP/DHCP Server 软件修改 EP 模块的 IP 地址。打开软件,扫描到到 CPX-E-EP 的 mac 地址后,双击设置 IP 地址(可修改网段)。在 Relation List 中选中 CPX-E-EP 的 Mac 行,点击 Disable BOOTP/DHCP 行禁用 DHCP,反馈指令成功后,新设置的固定 IP 生效。

3.4 恢复出厂设置

如果用户忘记了设置的固定 IP, 可恢复出厂设置:将旋转拨码盘拨到 900, 重启后生效,即恢复出厂设置。

4 Sysmac Studio

4.1 下载 EDS 文件

从 FESTO 官网下载相应的 EDS 文件,连接如下:

https://www.festo.com.cn/cn/zh/a/4080499/?q=CPX-E-EP~:festoSortOrderScored

4.2 确定通讯数据的对象实例

对象实例的数据为循环扫描的过程数据。本次测试采用 CPX-E-EP 通讯模块、16DI 数字量输入模块及 8DO 输出模块。

对象实例如下图所示:

实例	描述
100	Output data (SINT 格式的输出端数据)
101	Input data (SINT 格式的输入端数据)
102	Configuration data
110	Output data with padding(INT 格式的输出端数据)
111	Input data with padding (INT 格式的输入端数据)

根据实际 CPX-E 配置(16DI、8DO)确定其数据长度为:

100-Output data (1Byte) 101-Input data (2Bytes)

4.3 Sysmac Studio 软件配置

在内置 EtherNet/IP 端口设置中,将其固定 IP 地址与 CPX-E-EP 的 IP 地址修改在同一网段。

根据实例中的数据长度,对应地建立一系列 BYTE 型数组,并且将其网络公开分别设置为输入和输出。

配置 EtherNet/IP 站点

在目标设备处,点击右键选择显示 EDS 库(L)。在弹出的窗口中点击安装按钮,通过 EDS 文件存放路径找到对应的 EDS 文件,选中 EDS 文件点击打开,最后点击关闭按钮。

点击添加目标设备,之后在弹出的选项中将 CPX-E-EP 模块的 IP 地址输入。型号名称及修订版本按下图选择。

将信息填好完整后,点击添加按钮。

在 EtherNet/IP 标签组视图下面,点击"全部注册",可将之前公开为输入输出的全局变量导入标签组。

如下图所示,自动生成标签组和标签。

在连接设置页面中,双击目标设备的 CPX-E-EP,添加 EtherNet/IP 连接。

连接 IO 类型:即装配实例名目标变量:装配实例 ID大小[字节]:与标签组大小一致起始变量:相应的标签组名

4.4 过程 IO 数据实例(ID 100/101)

实例:测试 CPX-E-16DI 及 CPX-E-8DO 的 IO 数据,其输入和输出分别对应 DataIN 和 DataOut。

序号	操作	响应
1	X7.0 端口的传感器输入信号激活	DataIN[2]数组的 bit6 激活
2	强制 DataOut 的 bit1 为 1	X0.1 端口灯亮

5 I/O 诊断

5.1 通过 CPX-E-EP 的 DIL 拨码开关,激活 IO 诊断接口

DIL 开关		功能
ON 1 2	DIL 1: OFF DIL 2: OFF	无诊断 ¹⁾
0N 1 2	DIL 1: OFF DIL 2: ON	状态位已激活
0N 1 2	DIL 1: ON DIL 2: OFF	1/0 诊断接口激活
ON 1 2	DIL 1: ON DIL 2: ON	预留

¹⁾ 出厂设置

5.2 确定通讯数据的对象实例

5.2.1 实例 101 (输入数据)

在实例 101 中包含了 IO 诊断接口数据(如果激活)、技术模块、模拟量通道数据以及数字量数据。

实例 101 (Input) 具有下列成员信息列表:

对象	实例 ¹⁾	属性(通道)	成员信息列表记录	类型
102	1 48	1 64	数字量数据	B00L
104		1 32	模拟量通道数据	WORD
106		1 64/65 96	技术模块	BYTE/WORD
133	1	0/1	1/0 诊断接口数据(如果激活)	WORD

¹⁾ 实例 = 模块编号 + 1

实例 101 的输入数据传输顺序,如下图所示:

实例 101 (Input data)

在实例 101 内, CPX-E 系统的所有输入端都可经由网络进行循环传输。

传输时适用下列顺序:

- 1. I/O 诊断接口(如果激活)(针对 16 Bit)
- 2. 模拟量通道的对象实例(针对 16 Bit)
- 3. 技术模块的实例(针对 16 或 8 Bit)
- 4. 数字量输入的对象实例(针对 8 Bit)

5.2.2 实例 100 (输出数据)

在实例 100 中包含了 IO 诊断接口数据(如果激活)、技术模块、模拟量通道数据以及数字量数据。

实例 100 (Output) 具有下列参与设备信息列表:

对象	实例 ¹⁾	属性(通道)	参与设备信息列表记录	类型
103	1 48	1 64	数字量数据	B00L
105		1 32	模拟量通道数据	WORD
107		1 64/65 96	技术模块	BYTE/WORD
133	1	0/1	1/0 诊断接口数据(如果激活)	WORD

¹⁾ 实例 = 模块编号 + 1

实例 100 的输出数据传输顺序,如下图所示:

实例 100 (Output data)

在实例 100 内, CPX-E 系统的所有输入端都可经由网络进行循环传输。

- 传输时适用下列顺序:
- 1. I/O 诊断接口或状态位(如果激活)(针对 16 Bit)
- 2. 模拟量通道的对象实例(针对 16 Bit)
- 3. 技术模块的实例(针对 16 或 8 Bit)
- 4. 数字量输出的对象实例(针对 8 Bit)

5.2.3 数据整理

由于 I/O 诊断接口数据占用 2Bytes 的输入和输出。根据实际 CPX-E 配置(16DI、8DO)确定其数据长度为:

100-Output data (3Bytes)----前两个字节为 I/O 诊断接口数据,最后一个字节为数字量输出数据。

101-Input data (4Bytes)----前两个字节为 I/O 诊断接口数据,后两个字节为数字量输入数据。

5.3 Sysmac Studio 软件配置

按照第四章的配置方法,首先在全局变量中定义2个数据长度分别为4个字节的输入及3个字节的输出的数组,如下图所示:

然后在内置 EtherNet/IP 端口设置----标签组界面中,将输入输出全部注册,效果图如下:

最后在内置 EtherNet/IP 端口设置----连接界面中,修改输入输出、目标变量、字节大小等参数,效果图如下:

5.4 I/O 诊断接口的工作原理

通过 I/O 诊断接口可调出详细的诊断信息。例如:可准确查明是哪个模块,在哪条通道上出现了什么故障。通过 16 位输入、输出可调出系统诊断信息以及所有的诊断数据。

输出位定义,如下图所示:

输出位

通过 I/O 诊断接口的输出位 AO ... A12 以二进制编码规定所需数据的功能编号。 如果控制位 A15 发出 1 信号,则功能编号被应用。

1 位编号

2 输出

输入位定义,如下图所示:

输入位

如果确认位 E15 发出 1 信号,则由 CPX-E 系统通过输入位 E0 ... E7 发出应答数据。

1 位编号 2 输入

故障编号,下图只列举了部故障编码,具体信息见 CPX-E 系统手册,链接如下 https://www.festo.com/net/SupportPortal/Files/504228/CPX-E-SYS_2017-07_8071034z1.pdf

	(故障等级 2)	
故障编号	含义	补救方法
0	未出现错误	-
1	一般诊断(模块特有的故障)	→ 各模块的说明书
2	传感器电源(KZS)或输出(KZA)短路/过载	排除短路/过载 → 各模块的说明书。
3	电流输入/输出导线断裂/空转	• 检查电缆和传感器/执行元件,
		必要时更换。
4	因短路/过载导致负载电源 Uout 故障(输出侧)	• 检查执行元件及其接口。
5	工作电源 U _{EL/SEN} (输入侧) 欠压	• 排除欠压故障。
68	预留	-
9	低于额定范围	• 检查信号范围和设置的极限值。
10	超出额定范围	
11	阀短路	• 检查阀和气动接口。
12	预留	-
13	阀导线断裂 (Open load)	• 检查阀和气动接口。
14	超出 Condition Counter 极限值	• 通过参数设置或删除 Condition Counter
		极限值。
15	模块/通道失灵	• 检查外设/模块,必要时更换。
16	保存的配置与实际的系统扩展有所偏差。	对于系统:
		• 检查扩展,必要时重新保存
		→ Tab. 3.13。
		对于总线模块:
		• 将系统启动参数更改为"以默认的参数设
		置和当前 CPX-E 扩展启动系统"。
		对于控制器:
		• 通过 CODESYS 软件将实际配置作为额定
		配置保存。
17	保存的模块 1/0	→ 故障编号 16
	长度与实际的系统扩展有所偏差。	
18	超出 1/0 点数量	● 检查 DIL 开关位置和系统扩展
		→ 有关各总线模块/各控制器的说明书。
19	超过额定运行时长/寿命周期	 更换模块或备件 → 各模块的说明书。
20	参数设置错误 模拟量输入	• 检查参数设置,必要时通过正确的参数重
21	数据格式	新进行参数设置。
22	线性缩放	
23	测量值的平滑处理	
24	下限值	
25	上限值	
26	执行元件电源故障	• 排除短路/过载故障,或检查执行元件电源
		和执行元件。
27	备件缺失或错误	 更换模块或备件 → 各模块的说明书。
28	达到了警报值	 检查环境条件 → 各模块的说明书。

功能编号,如下图所示:

功能编号1)	说明	数据/参数	
0	扩展	系统数据	
	Force mode		
	系统启动		
1	Fail safe		
	Idle mode		
2	系统监控		
16 + 16 m + 0	Modulcode	模块数据	
16 + 16 m + 13	Revisionscode		
784 + 4m + 0 3	序列号		
1936	状态位	系统诊断数据	
1937	模块编号和诊断状态		
1938	故障编号		
2008 + 4 m + 0	第一个出错通道的编号	模块诊断数据	
2008 + 4 m + 1	模块错误编号		
2008 + 4 m + 2	信息 2(预留)		
2008 + 4 m + 3	信息 3(预留)		
3480	Power On 时的永久记录	诊断存储器参数	
	Run/Stop 过滤器 1		
3482	诊断存储器中的记录数量	诊断存储器−数据	
3483	溢出		
	状态		

本例使用功能编号如下:

功能编号 1937: 可以通过该编号查询模块是否存在故障以及存在故障模块的编号。

系统诊断数据 - 模块编号和诊断状态									
说明了是否存在诊断数据,有时包含第一个出现故障的模块	通过参数选	择							
的编号。 ¹⁾ 功能编号			Bit						
根据故障模块的模块编号,计算所属诊断数据的功能编号。	1937	7	6	5	4	3	2	1	0
第一个故障模块的模块编号 (0 47)				%	%	%	%	%	%
诊断状态			%						

¹⁾ 数值: 1 = 存在诊断数据; 0 = 不存在诊断数据

功能编号 2008+4m+1:可以通过该编号查询具体模块的故障编号。

模块诊断数据 - 故障编号									
故障编号(可能的故障信息 → 2.3.5)	通过参数选择	圣							
	功能编号1)	Bit							
	2008	7	6	5	4	3	2	1	0
	+ 4m								
故障编号 (0 255)	+ 1	%	%	%	%	%	%	%	%

¹⁾ 功能编号; m = 模块编号(从 0 开始从左向右计数)

5.5 实例

5.5.1 实例 1 将 CPX-E-8DO 模块的电源拔掉

通过 FMT 查询(2号模块存在故障同时故障代码为5)如下图所示:

通过 Sysmac Studio 的监视表,将 I/O 诊断的 A15 置 1,功能编码为 1937。将 1927 转为 2 进制数为 111 1001 0001,即输出数据应为 1000 0111 1001 0001。

在监视表中监视到输入数据,如下图所示:

由上图可以看出,应答数据第 6 位为 1,说明模块存在故障。第 0-5 位为故障模块的编号,转化为 10 进制为 2。即 CPX-E 的 2 号模块存在故障。通过 2008+4x2+1=2017(0111 1110 0001),即输出数据应为 1000 0111 1110 0001 查询该模块具体故障代码,如下图所示:

在监视表中监视到输入数据,如下图所示:

由上图可以看出,应答数据的第 0-7 位,为故障模块的故障代码,0000 0101 转化为 10 进制为 5.既 2 号模块的故障代码 为 5,查询故障编号表可知:欠电压故障。

5.5.2 实例 2 将 CPX-E-8DO 模块的 X0.0 端口短路

通过 FMT 查询(2号模块存在故障同时故障代码为2)如下图所示:

通过 Sysmac Studio 监视表查询应答数据,如下图所示:

由上图,应答数据的 0~7 位 0000~0010 转为 10 进制为 2 与 FMT 里面故障代码相同,查询故障编码表为短路/过载故障。

附录 LED 指示灯诊断

系统电源 PS

Power System [PS] - 工作电源 U _{EL/SEN}				
LED 指示灯	(绿色)	含义	补救方法	
*	ON OFF	电源可用。无故障。	-	
亮起				
*	ON JUILL	电源可用,但须在误差范围之外。	• 排除欠压故障。	
闪烁		总线模块上的互连缺失或不完整。	• 检查互连情况。	
闪烁	OFF	电源内部保险丝已响应。	 排除短路/过载故障。 然后按照参数设置重新自动接通电源 (出厂设置),或须将电源断开后再重新接通。 	
り 熄灭	ON OFF	电源不可用。	• 检查电源接口。	

负载电源 PL

Power Load [PL] - 负载电源 U _{OUT}				
LED 指示灯	(绿色)	含义	补救方法	
*	ON OFF	电源可用。无故障。	-	
亮起				
*	ON OFF	电源可用,但须在误差范围之外。	• 排除欠压故障。	
闪烁				
0	ON T	电源不可用。	• 检查电源接口。	
熄灭				

系统故障 SF

System Failure [SF] - 系统故障				
LED 指示灯	(红色) ¹⁾	含义	补救方法	
**	ON OFF	轻微故障 / 信息 (故障等级 1)	→ 2.3.5 故障等级	
闪烁	OF JULIUL	故障 (故障等级 2)		
	off JULIUL	严重故障 (故障等级 3)		
〇 熄灭	OFF	未出现错误	-	

¹⁾ 根据出现的故障等级, 系统故障 LED 指示灯闪烁。

参数设置、激活 M

Modify [M] - 参数设置已更改或 Forcen 激活				
LED 指示灯	(黄色)	含义		
亮起	ON OFF	设置成以保存的参数设置和保存的扩展启动系统;参数和扩展永久保存;禁止进行外部参数设置。 ¹⁾ 更换保存了参数设置的系统时需小心。 更换保存了参数设置的系统时需小心。 更换这些系统时,上级控制器无法自动创建参数设置。 • 请在更换之前确定所需的设置,必要时进行创建。		
兴 闪烁	ON OFF	功能 Forcen 已启用。 ¹⁾		
○ 熄灭	ON OFF	以默认的参数设置(出厂设置)和当前扩展启动系统;可进行外部参数设置 (预设)。		

¹⁾ 功能 Forcen 的显示(LED 指示灯闪烁)优先于保存了参数设置和扩展的系统启动设置的显示(LED 指示灯亮起)。

数据传输 XF1、XF2

数据传输 [XF1]、[XF2]				
LED 指示灯 (绿色)	含义	补救方法		
————————————————————————————————————	网络连接正常	-		
· 以烁 ¹⁾	进行数据传输(Traffic)	-		
熄灭	无网络连接	◆ 检查网络连接。		

¹⁾ 闪烁频率与数据传输有关。

模块状态 MS

模块状态 [MS	5]	
LED(绿色、	含义	补救方法
红色、橙色)		
*	正常运行状态	-
绿灯亮	ADV F 系体型黑天空粒子不工体	- 고수호라 opy 5 조상화목라바스화목
	CPX-E-系统配置不完整或不正确。	• 正在完成 CPX-E-系统配置或进行配置 纠正。
	不可排除的故障	• 请与 Festo 的服务部门联系
**		→ www.festo.com。
红灯亮		
**	可排除的故障	● 检查 CPX-E-系统的配置。
红灯闪烁		
**	CPX-E-系统正在自检。	-
红灯/绿灯交		
替闪烁		
*	Bootloader	-
橙色灯亮		
0	网络接口的逻辑电源不存在。	• 检查逻辑电源。
熄灭		

网络状态 NS

网络状态 [NS] ¹⁾				
LED (绿色、	含义	补救方法		
红色、橙色)				
绿灯亮	正常运行状态。 CPX-E-系统在线并具备网络连接。	-		
绿色闪烁	CPX-E-系统在线并获得一个 IP 地址, 但无已配置的网络连接。	● 检查 CPX-E-系统的配置,可能未将 CPX-E-系统分配给主站设备/扫描仪。		
红灯亮	通信失败。 设定了已在网络中使用的不允许的 IP 地址。	• 纠正 IP 地址。		
红灯闪烁	一个或多个"I/O-Connections"处于 "超时状态"。	• 检查到主站设备/扫描仪的物理连接。		
红灯/绿灯交 替闪烁	CPX-E-系统正在自检。	-		
- 	Modbus TCP 负责控制输出数据。 LED [MS] 也亮橙色灯时, Bootloader → Tab. 2.8。	-		
熄灭	CPX-E-系统不在线。 未分配 IP 地址或未从 DHCP 服务器获取 IP 地址。	检查网络连接。检查 IP 地址设定的设置。		

¹⁾ LED 指示灯的特性取决于所应用的网络协议。