VPPX 比例阀调试及设置

控制模式应用

平少雷 Festo 技术支持 2020 年 4 月 15 日

关键词:

VPPX,比例阀,FCT,压力控制,流量控制,力控制,真空度控制

摘要:

本文介绍了使用 VPPX 比例阀的特点、FCT 调试步骤,以及典型控制模式。

目标群体:

本文仅针对有一定自动化设备调试基础,以及费斯托产品应用调试经验,调试设置有一定基础工程师。

声明:

本文档为技术工程师根据官方资料和测试结果编写,旨在指导用户快速上手使用 Festo 产品,如果发现描述与官方 正式出版物冲突,请以正式出版物为准。

我们尽量罗列了实验室测试的软、硬件环境,但现场设备型号可能不同,软件/固件版本可能有差异,请务必在理 解文档内容和确保安全的前提下执行测试。

我们会持续更正和更新文档内容, 恕不另行通知。

1 VPF	PX 调试设备以及软件准备	
2 产品	品基本介绍	
2.1	产品基本概念	
2.2	控制原理图	5
2.3	外部基本布线图	5
2.4	基本特征	6
2.5	VPPX 比例阀优点	6
2.6	VPPX 基本参数及特征	6
2.7	VPPX 电接口定义以及连接电缆接线图	6
2.8	调试准备	7
2.9	故障	7
3 PID)相关基本计算原理	8
4 FCT	「软件的配置	
4.1	扫描接口	
4.2	根据比例阀的型号填写阀尺寸和压力范围	
4.3	组态	
4.4	外部信号的偏移量以及范围选择	
4.5	外部 PID 参数设置	
4.6	输入压力范围设置	
4.7	设备内部 PID 参数设置	
4.8	调整输出模拟量信号的范围和起始值	
4.9	示波器检测三个值变化	
4.10	设备监视器	
4.11	注意事项 (特别是电流型)	
5 VPF	PX 的应用模式案例	14

1 VPPX 调试设备以及软件准备

硬件准备:

元件名称	型号	备注
比例阀	VPPX-6L-L-1-G18-0L10H-S1	
编程电缆	VAVE-P8-VPS	
转接件(调试)	NEFC-M12G5-0.3-U1G5	需自配 USB 转 mini USB 连接电缆
流量传感器	SFAB-200U-WQ8-2SA-M12	
压力传感器	SPAU-P10R-H-Q4D-L-PNLK-PNVBA-M12D	
力传感器		
真空发生器	VADMI-95	
其他附件	节流阀、储气罐、气缸等	

表 1.1 硬件

软件准备:

软件名称	型号	版本
FCT 调试插件 VPPX		1.0.0 版本
	表 2.1 软件	

2 产品基本介绍

2.1 产品基本概念

1 功能和应用

按照规定,VPPX-... 用于根据给定的应有值,依据比例 调节压力或外部数值。如果此阀采用"内部"模式运 行,则可以通过其内置的压力传感器获取工作接口上的 压力值,并将其与应有值进行对比。当应有值与实际值 存在偏差时,此阀将进一步调节,直至输出端上达到规 定的应有值。在"外部"模式下,由附加的外部传感器 获取相应数值,并将其直接反馈给比例调压阀。此数值 将与应有值进行对比。当应有值与实际值存在偏差时, 此阀将对输出压力进行调节,直至外部传感器的数值达 到规定的应有值。

2.3 外部基本布线图

图 2.2 外部布局图

2.4 基本特征

1. VPPX 基于 VPPM 设计

• 一个电气接口对应所有尺寸

2.自由编程

- PID 控制器
- 设定值(可以选电压或电流)
- 3. 外部传感器输入
- 4. 用于控制器编程和可视化的 FCT 软件,并且使其参数也可以保存在 VPPX 内
- 5. 示波器功能用于优化控制过程
- 6. 用于多种应用场合: 流量控制、力控制、压力控制等

2.5 VPPX 比例阀优点

- 1. 改进过程质量
- 2. 灵活性更佳
- 3. 性能更好
- 4. 参数设置简单精确
- 5. 兼容性佳

2.6 VPPX 基本参数及特征

1. 压力范围: 0.1-10 bar

通过外部传感器,也能以高精度控制小的压力范围

2. 线性精度±0.5%

3.接口配 G 1/8", G1/4", G1/2"

4.控制器可自由编程

5.多级控制

6.外部传感器输入以控制不同的物理量

7.流量 1400 l/min -7000 l/min 左右

2.7 VPPX 电接口定义以及连接电缆接线图

VPPX-... 接线图

• 电接口处的各针脚分配情况如下:

Pin	电缆颜色 ¹⁾	接口 <mark>名称</mark>
1	白色(WH)	数字通信(不连接!)
2	棕色 (BN)	+24 V DC 供电电源
3	绿色 (GN)	模拟输入端 ₩-(- 应有值)
4	黄色 (YE)	模拟输入端 W+(+ 应有值)
5	灰色 (GY)	数字通信(不连接!)
6	粉红色 (PK)	模拟输出端 X(实际值)
7	蓝色 (BU)	OVDC或GND
8	红色 (RD)	模拟输入端 X _{外部} (外部实际值)
¹⁾ 如 的	使用带电缆的接线 拧紧扭矩为最大	线插口,请参见附件。接线插口 M12 0.5 Nm

图 2.3 电接口针脚定义图和电缆对照图

2.8 调试准备

- •请借助应有值信号连接 VPPX-...。VPPX-... 具有所谓 的"差分输入端"。与此同时在触点 3 和 4 上提供 应有值信号, 其中较低电位必须连接触点 3, 较高电 位必须连接触点 4。触点 3(- 应有值)可以和触点 7 (GND) 连接。
- 请您使用直流电(供电电压 UV = 24 V DC ±10 %)

为 VPPX-... 供电。 请使用至少比所需的最大输出压力大 1 bar 的输入压 力为 VPPX-... 加压。此时会出现一个按比例输出的压 力 p2。下表给出实际输出压力和应有值信号的对应 关系:

信号 1 % FS ¹⁾ 时的输出压力	信号 100 % FS ¹⁾ 时的输出压力
0.1 bar(出厂设置)	10 bar(出厂设置)
 FS = Full scale (满量程 (1 % FS = 0.1 V 或 0.2 100 % FS = 10 V 或 20 m - 输出压力: 0 V 或 4 mA 产生输出压力 	2) : /4.16 mA A) I O bar

2.9 故障

LED 故障指示灯:

LED 指示灯的	状态 ¹⁾	原因
Power LED 指示灯 (绿色)	ERROR LED 指示灯 (红色)	
亮起	亮起	- 应有值欠电压、过电压
亮起	闪烁	- 硬件错误 - 过电压 (> 30 V) - 内部温度过高
熄灭	熄灭	- 欠电压(< 18 V)
1) 显示元件的位	置参见第 1 页图	3.

电缆断裂时的故障响应:

原因	影响	
	电压型	电流型
由于电缆断 裂,应有值 不存在	输出压力降至 0 bar	保存最终压力值。输出 压力保持不变。输出压 力在中期可能升高或降 低。
由于电缆断 裂,供电电 压不存在	保存最后一个数值。输出) 在中期可能升高或降低。	玉力保持不变。输出压力

故障排除:

故障	可能的原因	补救方法
VPPX 无反应	供电电压缺失	检查供电电源 24 V DC 连接
指示灯未亮起)	应有值电压、应有值电 流缺失	检查控制单元,检查 接口
流量过低	接头原因导致流量截面 狭窄(回转螺纹接头)	使用其他可替换接头
压力上升 过慢	气缸容量大,气管长度长	选择其他参数组,或借助 Festo Configuration Tool (FCT) 切换至外部传感器。
尽管修改了 应有值设 置,压力仍 保持不变	- 电源电缆断裂 (最后设置的输出压 力保持不变。输出压 力在中期可能升高或 降低。) - 气源压力 P1 过低	- 更换电源电缆 - 提高气源压力

PID 控制是用于过程控制的一种常用方法,是通过被控量的反馈信号与目标信号的差量进行比例,积分微分运算来调节比例阀的输出压力,构成反馈系统,使被控量稳定在目标量上。

比例增益 P: 成比例地反映控制系统的偏差信号,偏差一旦产生,立即产生控制作用以减小偏差。比例控制器的输出 u(t)与输入 偏差 e(t)成正比,能迅速反映偏差,从而减小偏差,但不能消除静差。静差是指系统控制过程趋于稳定时,给定值与输出量的实测值 之差。偏差存在,才能使控制器维持一定的控制量输出,因此比例控制器必然存在着静差。比例控制作用的大小除与偏差 e(t)有关之 外,还取决于比例系数 Kp 的大小。比例系数 Kp 越小,控制作用越小,系统响应越慢;反之,比例系数 Kp 越大,控制作用也越强, 则系统响应越快。但是,Kp 过大会使系统产生较大的超调和振荡,导致系统的稳定性能变差。因此,不能将 Kp 选取过大,应根据被 控对象的特性来折中选取 Kp,使系统的静差控制在允许的范围内,同时又具有较快的响应速度。

积分 I: 主要用于消除静差提高系统的无差度。积分作用的强弱,取决于积分时问常数 Ti, Ti 越大积分作用越弱,反之则越 强。积分控制作用的存在与偏差 e(t)的存在时间有关,只要系统存在着偏差,积分环节就会不断起作用,对输入偏差进行积分,使控 制器的输出及执行器的开度不断变化,产生控制作用以减小偏差。在积分时间足够的情况下,可以完全消除静差,这时积分控制作用 将维持不变。Ti 越小,积分速度越快,积分作用越强。积分作用太强会使系统超调加大,甚至使系统出现振荡。

图 3.2

微分 D: 反映偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信 号,从而加快系统的动作速度,减小调节时间。积分控制作用的引入虽然可以消除静差,但是降低了系统的响应速度,特别是对于具 有较大惯性的被控对象,用 PI 控制器很难得到很好的动态调节品质,系统会产生较大的超调和振荡,这时可以引入微分作用。在偏 差刚出现或变化的瞬间,不仅根据偏差量作出及时反应(即比例控制作用),还可以根据偏差量的变化趋势(速度)提前给出较大 的控制作用(即微分控制作用),将偏差消灭在萌芽状态,这样可以大大减小系统的动态偏差和调节时间,使系统的动态调节品质得 以改善。微分环节有助于系统减小超调,克服振荡,加快系统的响应速度,减小调节时间,从而改善了系统的动态性能,但微分时间 常数过大,会使系统出现不稳定。微分控制作用一个很大的缺陷是容易引入高频噪声,所有在干扰信号比较严重的流量控制系统中不 宜引入微分控制作用。微分控制作用的阶跃响应特性对于一个恒定的偏差量,不管其数值有多大,微分控制作用均为零。因此,微分 作用不能消除静差,单独使用意义不大,一般需要与比例、积分控制作用配合使用,构成 PD 或 PID 控制。

图 3.3

对于 PID 控制,在控制偏差输入为阶跃信号时,立即产生比例和微分控制中作用。由于在偏差输入的瞬时,变化率非常大,微 分控制作用很强,此后微分控制作用迅速衰减,但积分作用越来越大,直至最终消除静差。PID 控制综合了比例、积分、微分 3 种作 用,既能加快系统响应速度、减小振荡、克服超调,也能有效消除静差,系统的静态和动态品质得到很大改善,因而 PID 控制器在工 业控制中得到了最为广泛的应用

正作用:当输出的压力随着压力的变大,外部传感器给出的是一个不断变大的电信号值

反作用:当输出的压力随着压力的变大,外部传感器给出的是一个不断变小的电信号值

前置控制 F 类似粗调参数的修正量, 然后 PID 的调节作为前置 F 的后的一个 PID 微调量, 实现大调节跟随 PID 的微调实现精确 控制。

4 FCT 软件的配置

4.1 扫描接口

从电脑端设备管理器查看 232 串口端,然同	f FCT Interfac	e 找到相应端口连	接。		
> U 处理器					
> 🔄 存储控制器					
> 打印队列					
> 🥪 电池					
Intel(R) Active Management Technology - SOL (COM3)					
> 🎒 固件					
> 🔜 计算机					
> 8 蓝牙					
> 😰 其他设备					
> 🔤 人体学输入设备					
> 圖 生物识别设备					
> 🔰 声音、视频和游戏控制器					
> 💡 週用中门芯线灶制器					
> 🏣 系统设备					
> 🥃 显示适配器					
> 4 音频输入和输出					
Festo Configuration Tool - VPPX0415					
项目(P) 元件(C) 视图(V) 其他(E) 帮助(H)					
项目树 単形名(K) 中 (K) 単除(D) 中	项目 🖉 12 *				
日· 卽 项目 关闭(C)	Value turne	VPPY			
	Valve type	NWG 1/8			
	Pressure limit	10 har	FCT Interfac	e	
Reset to default value	Treasure minic		. er internae	•	
Set password			All h		
Device monitor sor				VPPX: 12	
Amplification internal set point					
5 Internal PID controller			Serial		
Amplification output					
Trace Data					
			COM Port:	COM4	<u> </u>
			Bitrate	57600	v bos
				1	
					OK Court
	图 4.1	电脑和设备的连	接		

4.2 根据比例阀的型号填写阀尺寸和压力范围

4.3 组态

Festo Configuration Tool - VPPX0415

上图 4.3: 1 代表输入模拟量类型和范围

- 2代表外部传感器输入模拟量类型和范围
- 3代表压力单位设置
- 4代表比例阀输出的模拟量类型和范围
- 5代表比例阀外部控制和内部控制选项(如通过外部传感器给一个反馈信号需选择 External)

4.4 外部信号的偏移量以及范围选择

比如: 传感器输出一个 0-5V 电压信号类型, offset 起始为 0, 范围可以选择 200%, 从而得到一个 0-5V 范围

4.5 外部 PID 参数设置

上图 4.5: 1 代表前置控制参数设置 首先通过此参数对设备进行初步调节,当设置为 0 时,直接给的是 PID 反馈信号 2.比例增益参数 P 根据振幅强度设置合理数值数值,设置太大会出现剧烈的震荡

3.积分参数 I 根据当出现一个比较规律的偏差时,设置一个合理的值,设置太大会出现一个大振幅4.微分参数 D 当出现一个突然变化,合理的设置此参数会有些改善

设置按照先 F, 然后比例 P, 再 I, 最后 D 的合理按照 0-100%自由调整设置参数, 但是仅在内部 PID 参数设定后调整 功能模式: Direct 为压力增加外部传感器信号增大成正比

Invert 为压力增加外部传感器信号减小成反比

4.6 输入压力范围设置

起始偏移值 offset,当为 0 时,起始为 0bar.Range 范围设置量程,比如气源压力只有 6bar,使用 0-5bar,那么 range 范围 5bar.

图 4.6

4.7 设备内部 PID 参数设置

根据型号阀尺寸,在帮助文档选择标准的 PID 填写,其中默认用中级。

BG 6	F	Р	I	D	Setp	ooint filter [ms]
Preset 1 (fast)	44.5	21.2	6.1	0	25	
Preset 2 (medium)		15			50	
Preset 3 (slow)		8.75			100	

Standard parameters for internal pressure control

BG 8	F	Р	I	D	Setpoint filter [ms]
Preset 1 (fast)	45	16.87	5	0	45
Preset 2 (medium)]	20.62	3.2		100
Preset 3 (slow)		25	1.92		200

4.8 调整输出模拟量信号的范围和起始值

例如:输出范围 0-5V,则起始值 0,范围 5V

示波器检测三个值变化 4.9

通过三个曲线变化情况查看内部阀出口的输出压力值、外部传感器信号值、设定值输出值变化情况。 当启动外部传感器时,外部传感器信号值和设定值重合度越高,比例阀控制越准确。

4.10 设备监视器

左下角设备监视器,指示灯显示,简单判断其出现故障出处和问题。 比如:下图红框如果出现外部传感器信号电压超过 10V 就变红。

O Data not stored	

4.11 注意事项(特别是电流型)

如果使用**电流设定值以及电流反馈信号**,特别需要注意里面设置的 Function mode 设置是否与实际传感器一致,以及最后 Amplification output 设置的电流范围是否正确,默认值往往是 0,需要改为 16ma 或者相应值,合理填写外部 PID 值。 以上设置也可以参考 Demo case 程序进行相应填写。

5 VPPX 的应用模式案例

1.应用案例——压力控制

距离终端气罐有一段很长的管道

需要考虑压力损失

2.应用案例——流量控制

需要产生一个稳定的流量

节流开口变化时

3.应用案例——真空控制

需要产生恒定的真空

泄漏

